118 research outputs found

    General relationships between consumer dispersal, resource dispersal and metacommunity diversity

    Full text link
    One of the central questions of metacommunity theory is how dispersal of organisms affects species diversity. Here we show that the diversity-dispersal relationship should not be studied in isolation of other abiotic and biotic flows in the metacommunity. We study a mechanistic metacommunity model in which consumer species compete for an abiotic or biotic resource. We consider both consumer species specialized to a habitat patch, and generalist species capable of using the resource throughout the metacommunity. We present analytical results for different limiting values of consumer dispersal and resource dispersal, and complement these results with simulations for intermediate dispersal values. Our analysis reveals generic patterns for the combined effects of consumer and resource dispersal on the metacommunity diversity of consumer species, and shows that hump-shaped relationships between local diversity and dispersal are not universal. Diversity-dispersal relationships can also be monotonically increasing or multimodal. Our work is a new step towards a general theory of metacommunity diversity integrating dispersal at multiple trophic levels.Comment: Main text: 15 pages, 4 figures. Supplement: 25 pages, 12 figure

    Unifying Dynamical and Structural Stability of Equilibriums

    Full text link
    We exhibit a fundamental relationship between measures of dynamical and structural stability of equilibriums, arising from real dynamical systems. We show that dynamical stability, quantified via systems local response to external perturbations, coincides with the minimal internal perturbation able to destabilize the equilibrium. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a system's local response to white-noise perturbations directly reflects the intensity of internal white noise that it can accommodate before asymptotic mean-square stability of the equilibrium is lost.Comment: 13 pages, 2 figure

    Predicting coexistence of plants subject to a tolerance-competition trade-off

    Full text link
    Ecological trade-offs between species are often invoked to explain species coexistence in ecological communities. However, few mathematical models have been proposed for which coexistence conditions can be characterized explicitly in terms of a trade-off. Here we present a model of a plant community which allows such a characterization. In the model plant species compete for sites where each site has a fixed stress condition. Species differ both in stress tolerance and competitive ability. Stress tolerance is quantified as the fraction of sites with stress conditions low enough to allow establishment. Competitive ability is quantified as the propensity to win the competition for empty sites. We derive the deterministic, discrete-time dynamical system for the species abundances. We prove the conditions under which plant species can coexist in a stable equilibrium. We show that the coexistence conditions can be characterized graphically, clearly illustrating the trade-off between stress tolerance and competitive ability. We compare our model with a recently proposed, continuous-time dynamical system for a tolerance-fecundity trade-off in plant communities, and we show that this model is a special case of the continuous-time version of our model.Comment: To be published in Journal of Mathematical Biology. 30 pages, 5 figures, 5 appendice

    Resilience, reactivity and variability : A mathematical comparison of ecological stability measures

    Full text link
    In theoretical studies, the most commonly used measure of ecological stability is resilience: ecosystems asymptotic rate of return to equilibrium after a pulse-perturbation −-or shock. A complementary notion of growing popularity is reactivity: the strongest initial response to shocks. On the other hand, empirical stability is often quantified as the inverse of temporal variability, directly estimated on data, and reflecting ecosystems response to persistent and erratic environmental disturbances. It is unclear whether and how this empirical measure is related to resilience and reactivity. Here, we establish a connection by introducing two variability-based stability measures belonging to the theoretical realm of resilience and reactivity. We call them intrinsic, stochastic and deterministic invariability; respectively defined as the inverse of the strongest stationary response to white-noise and to single-frequency perturbations. We prove that they predict ecosystems worst response to broad classes of disturbances, including realistic models of environmental fluctuations. We show that they are intermediate measures between resilience and reactivity and that, although defined with respect to persistent perturbations, they can be related to the whole transient regime following a shock, making them more integrative notions than reactivity and resilience. We argue that invariability measures constitute a stepping stone, and discuss the challenges ahead to further unify theoretical and empirical approaches to stability.Comment: 35 pages, 7 figures, 2 table

    Unifying time evolution and optimization with matrix product states

    Get PDF
    We show that the time-dependent variational principle provides a unifying framework for time-evolution methods and optimisation methods in the context of matrix product states. In particular, we introduce a new integration scheme for studying time-evolution, which can cope with arbitrary Hamiltonians, including those with long-range interactions. Rather than a Suzuki-Trotter splitting of the Hamiltonian, which is the idea behind the adaptive time-dependent density matrix renormalization group method or time-evolving block decimation, our method is based on splitting the projector onto the matrix product state tangent space as it appears in the Dirac-Frenkel time-dependent variational principle. We discuss how the resulting algorithm resembles the density matrix renormalization group (DMRG) algorithm for finding ground states so closely that it can be implemented by changing just a few lines of code and it inherits the same stability and efficiency. In particular, our method is compatible with any Hamiltonian for which DMRG can be implemented efficiently and DMRG is obtained as a special case of imaginary time evolution with infinite time step.Comment: 5 pages + 5 pages supplementary material (6 figures) (updated example, small corrections

    A neutral theory of genome evolution and the frequency distribution of genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The gene composition of bacteria of the same species can differ significantly between isolates. Variability in gene composition can be summarized in terms of gene frequency distributions, in which individual genes are ranked according to the frequency of genomes in which they appear. Empirical gene frequency distributions possess a U-shape, such that there are many rare genes, some genes of intermediate occurrence, and many common genes. It would seem that U-shaped gene frequency distributions can be used to infer the essentiality and/or importance of a gene to a species. Here, we ask: can U-shaped gene frequency distributions, instead, arise generically via neutral processes of genome evolution?</p> <p>Results</p> <p>We introduce a neutral model of genome evolution which combines birth-death processes at the organismal level with gene uptake and loss at the genomic level. This model predicts that gene frequency distributions possess a characteristic U-shape even in the absence of selective forces driving genome and population structure. We compare the model predictions to empirical gene frequency distributions from 6 multiply sequenced species of bacterial pathogens. We fit the model with constant population size to data, matching U-shape distributions albeit without matching all quantitative features of the distribution. We find stronger model fits in the case where we consider exponentially growing populations. We also show that two alternative models which contain a "rigid" and "flexible" core component of genomes provide strong fits to gene frequency distributions.</p> <p>Conclusions</p> <p>The analysis of neutral models of genome evolution suggests that U-shaped gene frequency distributions provide less information than previously suggested regarding gene essentiality. We discuss the need for additional theory and genomic level information to disentangle the roles of evolutionary mechanisms operating within and amongst individuals in driving the dynamics of gene distributions.</p

    The neutral theory of biodiversity with random fission speciation

    Get PDF
    International audienceThe neutral theory of biodiversity and biogeography emphasizes the importance of dispersal and speciation to macro-ecological diversity patterns. While the influence of dispersal has been studied quite extensively, the effect of speciation has not received much attention, even though it was already claimed at an early stage of neutral theory development that the mode of speciation would leave a signature on metacommunity structure. Here, we derive analytical expressions for the distribution of abundances according to the neutral model with recruitment (i.e., dispersal and establishment) limitation and random fission speciation which seems to be a more realistic description of (allopatric) speciation than the point mutation mode of speciation mostly used in neutral models. We find that the two modes of speciation behave qualitatively differently except when recruitment is strongly limited. Fitting the model to six large tropical tree data sets, we show that it performs worse than the original neutral model with point mutation speciation but yields more realistic predictions for speciation rates, species longevities, and rare species. Interestingly, we find that the metacommunity abundance distribution under random fission is identical to the broken-stick abundance distribution and thus provides a dynamical explanation for this grand old lady of abundance distributions

    Dispersal and metapopulation stability

    Get PDF
    International audienc

    A mathematical synthesis of niche and neutral theories in community ecology

    Get PDF
    International audienceThe debate between niche-based and neutral community theories centers around the question of which forces shape predominantly ecological communities. Niche theory attributes a central role to niche differences between species, which generate a difference between the strength of intra- and interspecific interactions. Neutral theory attributes a central role to migration processes and demographic stochasticity. One possibility to bridge these two theories is to combine them in a common mathematical framework. Here we propose a mathematical model that integrates the two perspectives. From a niche-based perspective, our model can be interpreted as a Lotka-Volterra model with symmetric interactions in which we introduce immigration and demographic stochasticity. From a neutral perspective, it can be interpreted as Hubbell's local community model in which we introduce a difference between intra- and interspecific interactions. We investigate the stationary species abundance distribution and other community properties as functions of the interaction coefficient, the immigration rate and the strength of demographic stochasticity

    Quantum dynamical entropies for classical stochastic systems

    Full text link
    We compare two proposals for the dynamical entropy of quantum deterministic systems (CNT and AFL) by studying their extensions to classical stochastic systems. We show that the natural measurement procedure leads to a simple explicit expression for the stochastic dynamical entropy with a clear information-theoretical interpretation. Finally, we compare our construction with other recent proposals.Comment: 15 page
    • 

    corecore