222 research outputs found

    Digital analysis of the volume of the human foetal suprarenal arteries

    Get PDF
    Vascularisation of an organ is an index of its metabolic activity. The suprarenal glands are of crucial importance in the development of pregnancy. No data were found by the authors to describe the volume of the human foetal suprarenal arteries throughout pregnancy. The study was designed to form a database of human foetal suprarenal arterial volume in relation to foetal age and sex. Digital images were obtained at 4-week intervals of the suprarenal arteries of 30 foetuses aged between 12–40 Hbd. The arteries were primarily filled with LBS latex. A unique form of software was designed to assist in incorporating vector graphics, spliced functions of Bezier, into the analysis. The arteries contoured by the geometric curves were calculated for their initial, average and terminal diameter, length and volume. The measurements were compared in relation to foetal age and sex at 4-week intervals. Foetal age was assessed by means of calculation from the last menstrual period, manual measurement of foot length and ultrasonagraphic measurement of femoral length. The suprarenal arteries in human foetuses are of strongly individual variation both in their origin and quantity. The volume of the arteries appears constant in the group analysed

    Growth dynamics of the renal and suprarenal arteries in human foetuses

    Get PDF
    The kidneys and suprarenal cortex are of common embryonic origin. The suprarenal gland and kidney have a common pathway in angiogenesis. Each of the organs is of key importance for intrauterine and individual development, yet they vary greatly in growth dynamics throughout pregnancy. The authors compared the arterial supply of these organs quantitatively in respect to foetal age and sex

    Solitons in coupled atomic-molecular Bose-Einstein condensates in a trap

    Full text link
    We consider coupled atomic-molecular Bose-Einstein condensate system in a quasi-one-dimensional trap. In the vicinity of a Feshbach resonance the system can reveal soliton-like behavior. We analyze bright soliton solutions for the system in the trap and in the presence of the interactions between particles. We show that with increasing number of particles in the system two bright soliton solutions start resembling dark soliton profiles known in an atomic Bose-Einstein condensate with repulsive interactions between atoms. We analyze also methods for experimental preparation and detection of the soliton states.Comment: 7 pages, 7 figures, published versio

    Modification of emission properties of ZnO layers due to plasmonic near-field coupling to Ag nanoislands

    Full text link
    A simple fabrication method of Ag nanoislands on ZnO films is presented. Continuous wave and time-resolved photoluminescence and transmission are employed to investigate modifications of visible and UV emissions of ZnO brought about by coupling to localized surface plasmons residing on Ag nanoislands. The size of the nanoislands, determining their absorption and scattering efficiencies, is found to be an important factor governing plasmonic modification of optical response of ZnO films. The presence of the Ag nanoislands of appropriate dimensions causes a strong (threefold) increase in emission intensity and up to 1.5 times faster recombination. The experimental results are successfully described by model calculations within the Mie theory.Comment: 14 pages, 5 figure

    Wannier-Bloch approach to localization in high harmonics generation in solids

    Full text link
    Emission of high-order harmonics from solids provides a new avenue in attosecond science. On one hand, it allows to investigate fundamental processes of the non-linear response of electrons driven by a strong laser pulse in a periodic crystal lattice. On the other hand, it opens new paths toward efficient attosecond pulse generation, novel imaging of electronic wave functions, and enhancement of high-order harmonic generation (HHG) intensity. A key feature of HHG in a solid (as compared to the well-understood phenomena of HHG in an atomic gas) is the delocalization of the process, whereby an electron ionized from one site in the periodic lattice may recombine with any other. Here, we develop an analytic model, based on the localized Wannier wave functions in the valence band and delocalized Bloch functions in the conduction band. This Wannier-Bloch approach assesses the contributions of individual lattice sites to the HHG process, and hence addresses precisely the question of localization of harmonic emission in solids. We apply this model to investigate HHG in a ZnO crystal for two different orientations, corresponding to wider and narrower valence and conduction bands, respectively. Interestingly, for narrower bands, the HHG process shows significant localization, similar to harmonic generation in atoms. For all cases, the delocalized contributions to HHG emission are highest near the band-gap energy. Our results pave the way to controlling localized contributions to HHG in a solid crystal, with hard to overestimate implications for the emerging area of atto-nanoscience

    Bimodality and hysteresis in systems driven by confined L\'evy flights

    Get PDF
    We demonstrate occurrence of bimodality and dynamical hysteresis in a system describing an overdamped quartic oscillator perturbed by additive white and asymmetric L\'evy noise. Investigated estimators of the stationary probability density profiles display not only a turnover from unimodal to bimodal character but also a change in a relative stability of stationary states that depends on the asymmetry parameter of the underlying noise term. When varying the asymmetry parameter cyclically, the system exhibits a hysteresis in the occupation of a chosen stationary state.Comment: 4 pages, 5 figures, 30 reference

    Stationary states for underdamped anharmonic oscillators driven by Cauchy noise

    Full text link
    Using methods of stochastic dynamics, we have studied stationary states in the underdamped anharmonic stochastic oscillators driven by Cauchy noise. Shape of stationary states depend both on the potential type and the damping. If the damping is strong enough, for potential wells which in the overdamped regime produce multimodal stationary states, stationary states in the underdamped regime can be multimodal with the same number of modes like in the overdamped regime. For the parabolic potential, the stationary density is always unimodal and it is given by the two dimensional α\alpha-stable density. For the mixture of quartic and parabolic single-well potentials the stationary density can be bimodal. Nevertheless, the parabolic addition, which is strong enough, can destroy bimodlity of the stationary state.Comment: 9 page

    Polarizing Bubble Collisions

    Full text link
    We predict the polarization of cosmic microwave background (CMB) photons that results from a cosmic bubble collision. The polarization is purely E-mode, symmetric around the axis pointing towards the collision bubble, and has several salient features in its radial dependence that can help distinguish it from a more conventional explanation for unusually cold or hot features in the CMB sky. The anomalous "cold spot" detected by the Wilkinson Microwave Anisotropy Probe (WMAP) satellite is a candidate for a feature produced by such a collision, and the Planck satellite and other proposed surveys will measure the polarization on it in the near future. The detection of such a collision would provide compelling evidence for the string theory landscape.Comment: Published version. 15 pages, 8 figure

    The Gravity Dual of a Density Matrix

    Full text link
    For a state in a quantum field theory on some spacetime, we can associate a density matrix to any subset of a given spacelike slice by tracing out the remaining degrees of freedom. In the context of the AdS/CFT correspondence, if the original state has a dual bulk spacetime with a good classical description, it is natural to ask how much information about the bulk spacetime is carried by the density matrix for such a subset of field theory degrees of freedom. In this note, we provide several constraints on the largest region that can be fully reconstructed, and discuss specific proposals for the geometric construction of this dual region.Comment: 19 pages, LaTeX, 8 figures, v2: footnote and reference adde

    Levy stable noise induced transitions: stochastic resonance, resonant activation and dynamic hysteresis

    Full text link
    A standard approach to analysis of noise-induced effects in stochastic dynamics assumes a Gaussian character of the noise term describing interaction of the analyzed system with its complex surroundings. An additional assumption about the existence of timescale separation between the dynamics of the measured observable and the typical timescale of the noise allows external fluctuations to be modeled as temporally uncorrelated and therefore white. However, in many natural phenomena the assumptions concerning the abovementioned properties of "Gaussianity" and "whiteness" of the noise can be violated. In this context, in contrast to the spatiotemporal coupling characterizing general forms of non-Markovian or semi-Markovian L\'evy walks, so called L\'evy flights correspond to the class of Markov processes which still can be interpreted as white, but distributed according to a more general, infinitely divisible, stable and non-Gaussian law. L\'evy noise-driven non-equilibrium systems are known to manifest interesting physical properties and have been addressed in various scenarios of physical transport exhibiting a superdiffusive behavior. Here we present a brief overview of our recent investigations aimed to understand features of stochastic dynamics under the influence of L\'evy white noise perturbations. We find that the archetypal phenomena of noise-induced ordering are robust and can be detected also in systems driven by non-Gaussian, heavy-tailed fluctuations with infinite variance.Comment: 7 pages, 8 figure
    corecore