892 research outputs found

    Evidence for an external origin of heavy elements in hot DA white dwarfs

    Full text link
    We present a series of systematic abundance measurements for 89 hydrogen atmosphere (DA-type) white dwarfs with temperatures spanning 16000-77000K drawn from the FUSE spectral archive. This is the largest study to date of white dwarfs where radiative forces are significant, exceeding our earlier work, based mainly on IUE and HST data, by a factor three. Using heavy element blanketed non-LTE stellar atmosphere calculations, we have addressed the heavy element abundance patterns making completely objective measurements of abundance values and their error ranges using a \c{hi}2 fitting technique. We are able to establish the broad range of abundances seen in a given temperature range and establish the incidence of stars which appear, in the optical, to be atmospherically devoid of any material other than H. We compare the observed abundances to predictions of radiative levitation calculations, revealing little agreement. We propose that the supply of heavy elements is accreted from external sources rather than being intrinsic to the star. These elements are then retained in the white dwarf atmospheres by radiative levitation, a model that can explain both the diversity of measured abundances for stars of similar temperature and gravity, including cases with apparently pure H envelopes, and the presence of photospheric metals at temperatures where radiative levitation is no longer effective.Comment: 23 pages. 13 Figures, 4 Tables. Accepted for publication in the Monthly Notices of the Royal Astronomical Societ

    A photospheric metal line profile analysis of hot DA white dwarfs with circumstellar material

    Full text link
    Some hot DA white dwarfs have circumstellar high ion absorption features in their spectra, in addition to those originating in the photosphere. In many cases, the line profiles of these absorbing components are unresolved. Given the importance of the atmospheric composition of white dwarfs to studies of stellar evolution, extra-solar planetary systems and the interstellar medium, we examine the effect of including circumstellar line profiles in the abundance estimates of photospheric metals in six DA stars. The photospheric C and Si abundances are reduced in five cases where the circumstellar contamination is strong, though the relative weakness of the circumstellar Si IV absorption introduces minimal contamination, resulting in a small change in abundance. The inability of previous, approximate models to reproduce the photospheric line profiles here demonstrates the need for a technique that accounts for the physical line profiles of both the circumstellar and photospheric lines when modelling these blended absorption features.Comment: 7 pages, 5 figues, 3 tables, accepted for publication in MNRA

    High ions towards white dwarfs: circumstellar line shifts and stellar temperature

    Full text link
    Based on a compilation of OVI, CIV, SiIV and NV data from IUE, FUSE, GHRS, STIS, and COS, we derive an anti- correlation between the stellar temperature and the high ion velocity shift w.r.t. to the photosphere, with positive (resp. negative) velocity shifts for the cooler (resp. hotter) white dwarfs. This trend probably reflects more than a single process, however such a dependence on the WD's temperature again favors a CS origin for a very large fraction of those ion absorptions, previously observed with IUE, HST-STIS, HST-GHRS, FUSE, and now COS, selecting objects for which absorption line radial velocities, stellar effective temperature and photospheric velocity can be found in the literature. Interestingly, and gas in near-equilibrium in the star vicinity. It is also probably significant that the temperature that corresponds to a null radial velocity, i.e. \simeq 50,000K, also corresponds to the threshold below which there is a dichotomy between pure or heavy elements atmospheres as well as some temperature estimates for and a form of balance between radiation pressure and gravitation. This is consistent with ubiquitous evaporation of orbiting dusty material. Together with the fact that the fraction of stars with (red-or blue-) shifted lines and the fraction of stars known to possess heavy species in their atmosphere are of the same order, such a velocity-temperature relationship is consistent with quasi-continuous evaporation of orbiting CS dusty material, followed by accretion and settling down in the photosphere. In view of these results, ion measurements close to the photospheric or the IS velocity should be interpreted with caution, especially for stars at intermediate temperatures. While tracing CS gas, they may be erroneously attributed to photospheric material or to the ISM, explaining the difficulty of finding a coherent pattern of the high ions in the local IS 3D distribution.Comment: Accepted by A&A. Body of paper identical to v1. This submission has a more appropriate truncation of the original abstrac

    Near-infrared spectroscopy of the very low mass companion to the hot DA white dwarf PG1234+482

    Full text link
    We present a near-infrared spectrum of the hot (TeffT_{\rm eff} ≈\approx 55,000 K) DA white dwarf PG 1234+482. We confirm that a very low mass companion is responsible for the previously recognised infrared photometric excess. We compare spectra of M and L dwarfs, combined with an appropriate white dwarf model, to the data to constrain the spectral type of the secondary. We find that uncertainties in the 2MASS HKHK photometry of the white dwarf prevent us from distinguishing whether the secondary is stellar or substellar, and assign a spectral type of L0±\pm1 (M9-L1).Therefore, this is the hottest and youngest (≈106\approx 10^6 yr) DA white dwarf with a possible brown dwarf companion.Comment: 5 pages, 2 figures, accepted by MNRA

    Towards a standardised line list for G191-B2B, and other DA type objects

    Get PDF
    We present a comprehensive analysis of the far UV spectrum of G191-B2B over the range of 900-1700{\AA} using co-added data from the FUSE and STIS archives. While previous identifications made by Holberg et al. (2003) are reaffirmed in this work, it is found that many previously unidentified lines can now be attributed to Fe, Ni, and a few lighter metals. Future work includes extending this detailed analysis to a wider range of DA objects, in the expectation that a more complete analysis of their atmospheres can be realised.Comment: 4 pages, 2 figures, 1 table: To appear in the proceedings of the "18th European White Dwarf Workshop" in Krakow, Poland, 201

    The distribution of metals in hot DA white dwarfs

    Full text link
    The importance to stellar evolution of understanding the metal abundances in hot white dwarfs is well known. Previous work has found the hot DA white dwarfs REJ 1032+532, REJ 1614-085 and GD 659 to have highly abundant, stratified photospheric nitrogen, due to the narrow absorption line profiles of the FUV N V doublet and the lack of EUV continuum absorption. A preliminary analysis of the extremely narrow, deep line profiles of the photospheric metal absorption features of PG 0948+534 suggested a similar photospheric metal configuration. However, other studies have found REJ 1032+532, REJ 1614-085 and GD 659 can be well described by homogeneous models, with nitrogen abundances more in keeping with those of white dwarfs with higher effective temperatures. Here, a re-analysis of the nitrogen absorption features seen in REJ 1032+532, REJ 1614-085 and GD 659 is presented, with the aim of better understanding the structure of these stars, to test which models better represent the observed data and apply the results to the line profiles seen in PG 0948+534. A degeneracy is seen in the modelling of the nitrogen absorption line profiles of REJ 1032+532, REJ 1614-085 and GD 659, with low abundance, homogeneously distributed nitrogen models most likely being a better representation of the observed data. In PG 0948+534, no such degeneracy is seen, and the enigmatically deep line profiles could not be modelled satisfactorially.Comment: 7 pages, 14 figures, accepted for publication in MNRA
    • …
    corecore