1,287 research outputs found

    Bulk and Interfacial Shear Thinning of Immiscible Polymers

    Full text link
    Nonequilibrium molecular dynamics simulations are used to study the shear thinning behavior of immiscible symmetric polymer blends. The phase separated polymers are subjected to a simple shear flow imposed by moving a wall parallel to the fluid-fluid interface. The viscosity begins to shear thin at much lower rates in the bulk than at the interface. The entire shear rate dependence of the interfacial viscosity is consistent with a shorter effective chain length s∗s^* that also describes the width of the interface. This s∗s^* is independent of chain length NN and is a function only of the degree of immiscibility of the two polymers. Changes in polymer conformation are studied as a function of position and shear rate.Shear thinning correlates more closely with a decrease in the component of the radius of gyration along the velocity gradient than with elongation along the flow. At the interface, this contraction of chains is independent of NN and consistent with the bulk behavior for chains of length s∗s^*. The distribution of conformational changes along chains is also studied. Central regions begin to stretch at a shear rate that decreases with increasing NN, while shear induced changes at the ends of chains are independent of NN.Comment: 8 pages, 8 figure

    Income, personality, and subjective financial well-being: the role of gender in their genetic and environmental relationships

    Get PDF
    Citation: Zyphur, M. J., Li, W. D., Zhang, Z., Arvey, R. D., & Barsky, A. P. (2015). Income, personality, and subjective financial well-being: the role of gender in their genetic and environmental relationships. Frontiers in Psychology, 6, 16. doi:10.3389/fpsyg.2015.01493Increasing levels of financial inequality prompt questions about the relationship between income and well-being. Using a twins sample from the Survey of Midlife Development in the U. S. and controlling for personality as core self-evaluations (CSE), we found that men, but not women, had higher subjective financial well-being (SFWB) when they had higher incomes. This relationship was due to 'unshared environmental' factors rather than genes, suggesting that the effect of income on SFWB is driven by unique experiences among men. Further, for women and men, we found that CSE influenced income and SFWB, and that both genetic and environmental factors explained this relationship. Given the relatively small and male-specific relationship between income and SFWB, and the determination of both income and SFWB by personality, we propose that policy makers focus on malleable factors beyond merely income in order to increase SFWB, including financial education and building self-regulatory capacity

    Driving under the influence of alcohol: a sequence analysis approach

    Get PDF
    Driving under the influence of alcohol: A sequence analysis approac

    Random solids and random solidification: What can be learned by exploring systems obeying permanent random constraints?

    Full text link
    In many interesting physical settings, such as the vulcanization of rubber, the introduction of permanent random constraints between the constituents of a homogeneous fluid can cause a phase transition to a random solid state. In this random solid state, particles are permanently but randomly localized in space, and a rigidity to shear deformations emerges. Owing to the permanence of the random constraints, this phase transition is an equilibrium transition, which confers on it a simplicity (at least relative to the conventional glass transition) in the sense that it is amenable to established techniques of equilibrium statistical mechanics. In this Paper I shall review recent developments in the theory of random solidification for systems obeying permanent random constraints, with the aim of bringing to the fore the similarities and differences between such systems and those exhibiting the conventional glass transition. I shall also report new results, obtained in collaboration with Weiqun Peng, on equilibrium correlations and susceptibilities that signal the approach of the random solidification transition, discussing the physical interpretation and values of these quantities both at the Gaussian level of approximation and, via a renormalization-group approach, beyond.Comment: Paper presented at the "Unifying Concepts in Glass Physics" workshop, International Centre for Theoretical Physics, Trieste, Italy (September 15-18, 1999

    The scaling limit of the incipient infinite cluster in high-dimensional percolation. II. Integrated super-Brownian excursion

    Full text link
    For independent nearest-neighbour bond percolation on Z^d with d >> 6, we prove that the incipient infinite cluster's two-point function and three-point function converge to those of integrated super-Brownian excursion (ISE) in the scaling limit. The proof is based on an extension of the new expansion for percolation derived in a previous paper, and involves treating the magnetic field as a complex variable. A special case of our result for the two-point function implies that the probability that the cluster of the origin consists of n sites, at the critical point, is given by a multiple of n^{-3/2}, plus an error term of order n^{-3/2-\epsilon} with \epsilon >0. This is a strong statement that the critical exponent delta is given by delta =2.Comment: 56 pages, 3 Postscript figures, in AMS-LaTeX, with graphicx, epic, and xr package

    Connecting the vulcanization transition to percolation

    Full text link
    The vulcanization transition is addressed via a minimal replica-field-theoretic model. The appropriate long-wave-length behavior of the two- and three-point vertex functions is considered diagrammatically, to all orders in perturbation theory, and identified with the corresponding quantities in the Houghton-Reeve-Wallace field-theoretic approach to the percolation critical phenomenon. Hence, it is shown that percolation theory correctly captures the critical phenomenology of the vulcanization transition associated with the liquid and critical states.Comment: 9 pages, 5 figure

    Positive Health and Health Assets: Re-analysis of Longitudinal Datasets

    Get PDF
    Most approaches to health over the centuries have focused on the absence of illness. In contrast, we are investigating Positive Health —well-being beyond the mere absence of disease. In this article, we describe our theoretical framework and empirical work to date on Positive Health. Positive Health empirically identifies health assets by determining factors that predict health and illness over and above conventional risk factors. Biological health assets might include, for example, high heart rate variability, high levels of HDL, and cardiorespiratory fitness. Subjective health assets might include positive emotions, life satisfaction, hope, optimism, and a sense of meaning and purpose. Functional health assets might include close friends and family members; a stable marriage; meaningful work; participation in a social community; and the ability to carry out work, family, and social roles

    0.1 µm InP HEMT devices and MMICs for cryogenic low noise amplifiers from X-band to W-band

    Get PDF
    We present the TRW 0.1 µm InP HEMT MMIC production technology that has been developed and used for state-of-the-art cryogenic LNA applications. The 0.1 µm InP HEMT devices typically show cutoff frequency above 200 GHz and transconductance above 1000 mS/mm. Aspects of device design and fabrication are presented which impact important parameters including the InP HEMT device gain, gate leakage current, and parasitic capacitance. One example of state-of-the-art cryogenic MMIC performance is a W-band cryogenic MMIC LNA operated at 20 degrees Kelvin that shows above 23 dB gain and a noise temperature of 30 to 40 K (0.45 to 0.6 dB noise figure) over the band of 80-105 GHz

    Randomly Crosslinked Macromolecular Systems: Vulcanisation Transition to and Properties of the Amorphous Solid State

    Full text link
    As Charles Goodyear discovered in 1839, when he first vulcanised rubber, a macromolecular liquid is transformed into a solid when a sufficient density of permanent crosslinks is introduced at random. At this continuous equi- librium phase transition, the liquid state, in which all macromolecules are delocalised, is transformed into a solid state, in which a nonzero fraction of macromolecules have spontaneously become localised. This solid state is a most unusual one: localisation occurs about mean positions that are distributed homogeneously and randomly, and to an extent that varies randomly from monomer to monomer. Thus, the solid state emerging at the vulcanisation transition is an equilibrium amorphous solid state: it is properly viewed as a solid state that bears the same relationship to the liquid and crystalline states as the spin glass state of certain magnetic systems bears to the paramagnetic and ferromagnetic states, in the sense that, like the spin glass state, it is diagnosed by a subtle order parameter. In this review we give a detailed exposition of a theoretical approach to the physical properties of systems of randomly, permanently crosslinked macromolecules. Our primary focus is on the equilibrium properties of such systems, especially in the regime of Goodyear's vulcanisation transition.Comment: Review Article, REVTEX, 58 pages, 3 PostScript figure
    • …
    corecore