105 research outputs found

    Temperature effects on the dynamics of Aedes albopictus (Diptera : Culicidae) populations in the laboratory

    Get PDF
    We investigated how constant temperatures of 22, 24, and 26 degreesC experienced across the full life cycle affected the dynamics of caged populations of Aedes albopictus (Skuse). All cages were equipped with plastic beakers that served as sites for oviposition and larval development. We measured the per capita daily mortality and emergence rates of the adults and size of adult females, and estimated the intrinsic rate of increase (r) and asymptotic density (K) for each adult population. populations at 26 degreesC had greater intrinsic rates of increase and lower asymptotic densities than populations at 22 and 24 degreesC. Populations at high temperatures initially had greater daily. per capita emergence rates, and steeper. declines in per capita emergence rate as density increased over tire course of the experiment, There was no temperature effect on the size of adult females nor on the per capita daily mortality rate of adults. Results indicated that populations of Ae. albopictus occurring in regions with relatively high summer temperatures are likely to have hiyh rates of population growth with populations of adults peaking early in the season. These populations mn)l attain relatively. low peak densities of adults. Populations occurring in regions with low summer temperatures are likely to experience slow, steady production of adults throughout the season with population size peaking later in the season, and may attain higher peal, densities of adults. Nigh temperature conditions, associated with climate change, may increase the rate of spread of Ae, albopictus by increasing rates of increase and by. enhancing colonization due to rapid population growth

    Linking Nutrient Stoichiometry to Zika Virus Transmission in a Mosquito

    Get PDF
    Food quality and quantity serve as the basis for cycling of key chemical elements in trophic interactions; yet the role of nutrient stoichiometry in shaping host–pathogen interactions is under appreciated. Most of the emergent mosquito-borne viruses affecting human health are transmitted by mosquitoes that inhabit container systems during their immature stages, where allochthonous input of detritus serves as the basal nutrients. Quantity and type of detritus (animal and plant) were manipulated in microcosms containing newly hatched Aedes aegypti mosquito larvae. Adult mosquitoes derived from these microcosms were allowed to ingest Zika virus-infected blood and then tested for disseminated infection, transmission, and total nutrients (percent carbon, percent nitrogen, ratio of carbon to nitrogen). Treatments lacking high-quality animal (insect) detritus significantly delayed development. Survivorship to adulthood was closely associated with the amount of insect detritus present. Insect detritus was positively correlated with percent nitrogen, which affected Zika virus infection. Disseminated infection and transmission decreased with increasing insect detritus and percent nitrogen. We provide the first definitive evidence linking nutrient stoichiometry to arbovirus infection and transmission in a mosquito using a model system of invasive Ae. aegypti and emergent Zika virus

    Culex tarsalis is a competent vector species for Cache Valley virus

    Get PDF
    Background: Cache Valley virus (CVV) is a mosquito-borne orthobunyavirus endemic in North America. The virus is an important agricultural pathogen leading to abortion and embryonic lethality in ruminant species, especially sheep. The importance of CVV in human public health has recently increased because of the report of severe neurotropic diseases. However, mosquito species responsible for transmission of the virus to humans remain to be determined. In this study, vector competence of three Culex species mosquitoes of public health importance, Culex pipiens, Cx. tarsalis and Cx. quinquefasciatus, was determined in order to identify potential bridge vector species responsible for the transmission of CVV from viremic vertebrate hosts to humans. Results: Variation of susceptibility to CVV was observed among selected Culex species mosquitoes tested in this study. Per os infection resulted in the establishment of infection and dissemination in Culex tarsalis, whereas Cx. pipiens and Cx. quinquefasciatus were highly refractory to CVV. Detection of viral RNA in saliva collected from infected Cx. tarsalis provided evidence supporting its role as a competent vector. Conclusions: Our study provided further understanding of the transmission cycles of CVV and identifies Cx. tarsalis as a competent vector

    Genome Sequence Analysis of Dengue Virus 1 Isolated in Key West, Florida

    Get PDF
    Dengue virus (DENV) is transmitted to humans through the bite of mosquitoes. In November 2010, a dengue outbreak was reported in Monroe County in southern Florida (FL), including greater than 20 confirmed human cases. The virus collected from the human cases was verified as DENV serotype 1 (DENV-1) and one isolate was provided for sequence analysis. RNA was extracted from the DENV-1 isolate and was used in reverse transcription polymerase chain reaction (RT-PCR) to amplify PCR fragments to sequence. Nucleic acid primers were designed to generate overlapping PCR fragments that covered the entire genome. The DENV-1 isolate found in Key West (KW), FL was sequenced for whole genome characterization. Sequence assembly, Genbank searches, and recombination analyses were performed to verify the identity of the genome sequences and to determine percent similarity to known DENV-1 sequences. We show that the KW DENV-1 strain is 99% identical to Nicaraguan and Mexican DENV-1 strains. Phylogenetic and recombination analyses suggest that the DENV-1 isolated in KW originated from Nicaragua (NI) and the KW strain may circulate in KW. Also, recombination analysis results detected recombination events in the KW strain compared to DENV-1 strains from Puerto Rico. We evaluate the relative growth of KW strain of DENV-1 compared to other dengue viruses to determine whether the underlying genetics of the strain is associated with a replicative advantage, an important consideration since local transmission of DENV may result because domestic tourism can spread DENVs

    The 'indigenous native peasant' trinity: imagining a plurinational community in Evo Morales's Bolivia

    Get PDF
    Over the last two decades Latin America has been a laboratory for the implementation of new models of state and citizenship. In Bolivia the (neo)liberal multicultural paradigm dominant in the 1990s has recently been replaced by a plurinational paradigm, which implies a deepening of the decentralization process and the strengthening of rights for traditionally marginalized social sectors. This paper describes the process of construction of a plurinational ‘imagined community’ and, in particular, of one of its core narratives: The ‘indigenous native peasant’. I argue that the negotiation of this collective identity and its inclusion as one of the core ideas in the new constitution is the result of a contingent strategy in response to a highly conflictive scenario, which has not been, however, able to trigger a change in the way people identify themselves. Yet in recent years, social movements’ identities have been shaped by centrifugal forces. These forces should be understood as the result of a process of collective actors’ adaptation to institutional and regulatory reforms and contribute to explaining the increase of new intrasocietal conflicts linked to the redefinition of citizenship and territorial boundaries

    Modelling distributions of Aedes aegypti and Aedes albopictus using climate, host density and interspecies competition.

    Get PDF
    Florida faces the challenge of repeated introduction and autochthonous transmission of arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predictive models of the spatial distribution of these species would aid surveillance and vector control efforts. To predict the occurrence and abundance of these species, we fit a mixed-effects zero-inflated negative binomial regression to a mosquito surveillance dataset with records from more than 200,000 trap days, representative of 53% of the land area and ranging from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between adult populations of Aedes aegypti and Aedes albopictus for the sampled sites. Wind speed was negatively associated with the occurrence and abundance of both vectors. Our model predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random 10% subset of sites and data since 2017, suggesting a potential for predicting the distribution of the two Aedes vectors

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Transstadial Effects of Bti on Traits of Aedes aegypti and Infection with Dengue Virus.

    No full text
    Most mosquito control efforts are primarily focused on reducing the adult population size mediated by reductions in the larval population, which should lower risk of disease transmission. Although the aim of larviciding is to reduce larval abundance and thus recruitment of adults, nonlethal effects on adults are possible, including transstadial effects on phenotypes of adults such as survival and pathogen infection and transmission. In addition, the mortality induced by control efforts may act in conjunction with other sources of mosquito mortality in nature. The consequences of these effects and interactions may alter the potential of the population to transmit pathogens. We tested experimentally the combined effects of a larvicide (Bacillus thuringiensis ssp. israelensis, Bti) and competition during the larval stages on subsequent Aedes aegypti (Linnaeus) traits, population performance, and susceptibility to dengue-1 virus infection. Ae. aegypti that survived exposure to Bti experienced accelerated development, were larger, and produced more eggs with increasing amounts of Bti, consistent with competitive release among surviving mosquitoes. Changing larval density had no significant interactive effect with Bti treatment on development and growth to adulthood. Larval density, but not Bti or treatment interaction, had a strong effect on survival of adult Ae. aegypti females. There were sharper declines in cumulative daily survival of adults from crowded than uncrowded larval conditions, suggesting that high competition conditions of larvae may be an impediment to transmission of dengue viruses. Rates of infection and dengue-1 virus disseminated infections were found to be 87±13% and 88±12%, respectively. There were no significant treatment effects on infection measurements. Our findings suggest that larvicide campaigns using Bti may reduce the number of emerged adults, but survivors will have a fitness advantage (growth, development, enhanced production of eggs) relative to conspecifics that are not under larvicide pressure. However, under most circumstances, these transstadial effects are unlikely to outweigh reductions in the adult population by Bti and altered risk of disease transmission

    The Extrinsic Incubation Period of Zika Virus in Florida Mosquitoes Aedes aegypti and Ae. albopictus

    No full text
    The Asian genotype of Zika virus (ZIKV) emerged in Brazil in 2015 and subsequently spread throughout the Americas. In July 2016, Florida experienced its first locally acquired ZIKV infection in the continental U.S. Concerns about health risks from ZIKV infection have increased the need to investigate the interactions between potential mosquito vectors and ZIKV. The time it takes for an arbovirus to propagate within a mosquito, and become transmissible, is the extrinsic incubation period (EIP). The EIP for potential mosquito vectors in Florida is unknown. To address this gap in the understanding of ZIKV epidemiology, Florida Aedes aegypti (L.) and Ae. albopictus (Skuse) were orally exposed to ZIKV infected blood meals and fully engorged mosquitoes were held at a constant temperature of 28 °C through the duration of the experiment. Saliva expectorates were collected from cohorts of mosquitoes and tested for the presence of ZIKV at three-day intervals over a period of 24 days to allow for an evaluation of the EIP of the emergent Asian lineage of ZIKV. High rates of infected bodies in Ae. albopictus (75–94%) and Ae. aegypti (68–86%) were observed throughout the incubation period, which did not differ by species. Higher rates of disseminated infection were observed later during the incubation period but did not differ between species. We calculated the 50% EIP to be shorter in Ae. albopictus than Ae. aegypti (16.2 and 18.2 days post infection, respectively). The competence for ZIKV observed in both species may contribute to high rates of ZIKV transmission in Florida populations
    • 

    corecore