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ARTICLE

Temperature Effects on the Dynamics of Aedes albopictus
(Diptera: Culicidae) Populations in the Laboratory

BARRY W. ALTO,1, 2 AND STEVEN A. JULIANO1

J. Med. Entomol. 38(4): 548Ð556 (2001)

ABSTRACT We investigated how constant temperatures of 22, 24, and 268C experienced across
the full life cycle affected the dynamics of caged populations of Aedes albopictus (Skuse). All cages
were equipped with plastic beakers that served as sites for oviposition and larval development. We
measured the per capita daily mortality and emergence rates of the adults and size of adult females,
andestimated the intrinsic rateof increase (r) andasymptoticdensity (K) for eachcagedpopulation.
Populations at 268C had greater intrinsic rates of increase and lower asymptotic densities than
populations at 22 and 248C. Populations at high temperatures initially had greater daily per capita
emergence rates, and steeper declines in per capita emergence rate as density increased over the
course of the experiment. There was no temperature effect on the size of adult females nor on the
per capita dailymortality rate of adults. Results indicated that populations ofAe. albopictusoccurring
in regions with relatively high summer temperatures are likely to have high rates of population
growthwithpopulationsof adultspeakingearly in the season.Thesepopulationsmayattain relatively
low peak densities of adults. Populations occurring in regions with low summer temperatures are
likely to experience slow, steady production of adults throughout the season with population size
peaking later in the season, and may attain higher peak densities of adults. High temperature
conditions, associated with climate change, may increase the rate of spread of Ae. albopictus by
increasing rates of increase and by enhancing colonization due to rapid population growth.

KEY WORDS Aedes albopictus, rate of increase, asymptotic density, mortality rate, emergence
rate, global climate change

Aedes albopictus (SKUSE) is an introduced container-
dwelling mosquito native to Asia. Larvae develop in
water-Þlled tires, cemetery vases, bird baths, other
artiÞcial containers, and tree holes. Females deposit
desiccation resistant eggs on walls of containers, and
these eggs hatch when ßooded (Hawley 1988). Aedes
albopictus is an ecological generalist adapted to both
tropical and temperate climates and capable of using
a wide range of suitable container habitats (Hawley
1988). Breeding populations of Ae. albopictus became
established in the United States in the mid-1980s via
imported used automobile tires (Hawley et al. 1987).
Since its introduction, Ae. albopictus has spread rap-
idly and established breeding populations over much
of the eastern United States.

Previous ecological research on Ae. albopictus has
focused on diapause, freezing tolerance (Pumpuni et
al. 1992, Focks et al. 1994,Hanson andCraig 1995), and
its competitive interactions with other mosquitoes
(Livdahl and Willey 1991, OÕMeara et al. 1995, Juliano
1998). Few studies have focused on the effects of
temperature during the active season on the life his-
tory traits (e.g., age at pupation, adult size, female
fecundity) of this species (Hien 1975). In tropical and

subtropical climates, Ae. albopictus is abundant year
round; however, in temperate climates such as the
midwesternUnited States and Japan, the active season
for larval stages is limited to late spring through early
fall, with larval abundance greatest in JulyÐAugust
(Mori and Wada 1978, Toma et al. 1982). Aedes al-
bopictus occurs over a wide geographic range and
encounters a wide range of ambient temperatures.
The range expansion of Ae. albopictus in North Amer-
ica is likely to continue, and regional differences in
temperature may affect its population dynamics, as is
the case in other mosquitoes (e.g., Rueda et al. 1990,
Lyimo et al. 1992).

In addition to encountering regional differences in
temperature as a result of its spread in North America,
Ae. albopictus is likely to be affected by climate
change. Human activities, mainly the burning of fossil
fuels, have added large amounts of greenhouse gases
(e.g., CO2,CH4,O3,NO) to the atmosphere (Vitousek
1994, Patz et al. 1996), which enhance the greenhouse
effect. These atmospheric changes are likely to have
major climatic consequences, such as predicted in-
creases in global average temperature of 1.5Ð4.58C if
greenhouse gases double in the next century (Schnei-
der 1993). For Ae. albopictus, such temperature
changes may affect population dynamics by altering
reproductive and mortality rates (Porter et al. 1991,
Lawton 1995, Sutherst et al. 1995), and therefore may
affect its range expansion.
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Although it is likely that different temperatures af-
fect the population dynamics of Ae. albopictus, the
speciÞc direction of that effect is difÞcult to predict.
Increased temperatures, up to a point, are likely to
increase Ae. albopictus population growth by increas-
ing growth and development rates (e.g., Hien 1975).
However, increased temperatures also are likely to be
associated with greater desiccation, perhaps causing
greater mortality of egg or adult Ae. albopictus (Sota
and Mogi 1992a, 1992b; Reeves et al. 1994; Mogi et al.
1996), which may have important consequences for
the spread of this species. Many investigations of tem-
perature effects on mosquitoes have focused on only
partof their life cycle,mainlyaquatic stages(e.g.,Hien
1975, Rueda et al. 1990). Temperature may affect egg
viability (e.g., Parker 1986), larval development (e.g.,
Ruedaet al. 1990), blood-feedingbehavior (e.g.,Crans
et al. 1996), female fecundity (e.g., Hurlbut 1973), and
adult longevity (e.g., Hawley 1985, Day et al. 1990),
inßuencing populations in uncertain ways. For exam-
ple, individuals reared at higher temperatures may
develop more rapidly, but these adults tend to be
smaller (Day et al. 1990, Rueda et al. 1990). Female
size is positively related to fecundity (Steinwascher
1982, Day et al. 1990). How such effects of rearing
temperature on mortality, development rate, and
adult size combine to affect population growth cannot
be determined without experiments.

The current study investigates how constant tem-
perature across the entire life cycle affects the pop-
ulation dynamics of Ae. albopictus. This experiment
will provide information relevant to predicting how
regional differences in summer temperature within
eastern North America and possible increases in tem-
perature due to climate change may affect the range
expansion of Ae. albopictus.

Materials and Methods

Source of Mosquitoes. Aedes albopictus eggs used in
this experiment were the offspring of Þeld-collected
mosquitoes from east St. Louis, IL. It is likely that this
source population is the strain of Ae. albopictus cur-
rently undergoing expansion in the midwestern
United States. Field-collected Ae. albopictus were al-
lowed to mate freely in 0.6-m3 cages at a photoperiod
of 16:8 (L:D)hand22Ð278C.This colonywasblood fed
weekly on anesthetized laboratorymice (Illinois State
University Animal Care protocol 1-98-06) and pro-
vided with ' 10% sucrose solution ad libitum (Mun-
stermann and Wasmuth 1985, Juliano 1989, Juliano et
al. 1993).

Experimental Design and Data Collection. Exper-
imental containers, used for oviposition and larval
development, consistedof 500-mlplasticbeakers lined
with durable paper and Þlled with 400 ml of a 2:1
mixture of tire and deionized water. Black locust (Ro-
binia psuedoacacia (L.) leaves (2.00 6 0.05 g dry mass
after 24 h at 608C) and Þne particulate sediment from
tires (1 g autoclaved drained fresh mass) were added
to each beaker. Tire water, sediment, and leaves were
collected fromanestablished tire site nearNormal, IL.

Tire water was Þltered through a 70-mm Þlter to re-
moveunwanted organismswhile allowingmicrobes to
pass. After the contents of the beakers had soaked for
10 d, Ae. albopictus F1 eggs were synchronously
hatched (Novak and Shroyer 1978), and 50 F1 Þrst
instars (,24 h old)were added to each of the beakers.
Twobeakerswereplaced ineachofnineexperimental
cages, each constructed from a 20-liter plastic bucket
equippedwith a cloth sleeve and a 0.5-mmnylonmesh
top allowing for air ßow and evaporation. The cages
provided an environment suitable for completion of
the entire life cycle ofAe. albopictus.Waterwithin the
beakers was allowed to evaporate to 90% of its maxi-
mum volume of 400 ml, then returned to 400 ml using
deionized water. These water additions simulated ep-
isodic rainfall and induced hatches of eggs and sub-
sequent cohorts of larvae in beakers. All cages were
continuously provided with '10% sucrose solution
and weekly blood meals from anesthetized laboratory
mice, using methods similar to those for the parental
generation. The experiment ran for 120 d, which was
long enough for the production of several generations
of adults. Cages were placed in environmental cham-
bers (Percival I-35VL, Boone, IA) set at constant tem-
peratures of 228C, 248C, and 268C and a photoperiod
of 16:8 (L:D)h. These temperatures approximated the
range of mean July temperatures between 39 and 418
N latitude in the midwestern United States, respec-
tively (Court 1974), areas recently invaded by popu-
lations of Ae. albopictus during its current range ex-
pansion. The 48C temperature range we used also
approximated the predicted increase in temperatures
due to anthropogenic climate change (Schneider
1993). We maintained three replicates at each tem-
perature (3 cages per environmental chamber, nine
total cages). In this experiment, humidity within en-
vironmental chambers was not controlled; however, a
2-wk monitoring period (seven readings) at the start
of the experiment indicated that humidity was rela-
tively high and fairly constant among temperatures
(79.17 6 0.48%Ð85.71 6 0.29%, mean 6 SE relative
humidity using humidity pens (Fisher, Fairlawn, NJ).

When the Þrst pupae appeared, beakers within the
cages were checked daily and pupal exuviae were
removed,examinedat163magniÞcation todetermine
sexes, and emergence enumerated by date. Similarly,
we determined mortality by daily removal of dead
adults within the cages, and recorded escaped adults
(which were killed and counted as mortality). It is
likely that a small number of pupal exuviae, escaped
adults, and dead adults were not recorded. However,
a comparison of the actual versus estimatednumber of
adults remaining at the end of the experiment showed
that estimates were within 15% (average deviation) of
the actual number of adults remaining. Four of the
caged populations yielded overestimates of the num-
ber of adults, and four caged populations yielded
underestimates, with no apparent trend among tem-
peratures. Therefore, our methods for recording
emergenceandmortalitywereunbiasedandrelatively
accurate. We determined the mean size of adult fe-
males by measuring wing lengths of females (dried for
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24 h 608C) from the beginning (n 5 10) and end (n 5
10) from each cage.

Data and Analyses. In one replicate at 268C, all
larvae died within the Þrst week; therefore, no adults
were produced. This replicate was excluded from
analysis. For all variables, temperature effects were
analyzed by one-way analyses of variance ANOVA
(SAS Institute 1989) and randomization ANOVA (RT
version 1.02, Manly 1991a, 1991b). Because of the
relatively small sample size, a deviation from normal-
ity may go undetected. Therefore, randomization
ANOVAs (which do not assume normality) served as
a check on the sensitivity of results to any departure
from normality. For all analyses, except intercept es-
timates for the emergence rate, we could not reject
null hypotheses of normality (KolmogorovÐSmirnov
test) and homogeneous variances (LeveneÕs test) for
the raw data. Intercept estimates for the emergence
rate were transformed reciprocally to meet the as-
sumptions. For all analyses, results from standard and
randomizationANOVAswere similar, and only results
of standard ANOVAs are reported. When a signiÞcant
temperature effect was detected, we compared all
possible pairs of treatment means at an experiment-
wise a 5 0.05 (Ryan-Einot-Gabriel-Welsch multiple
range test; SAS Institute 1989).

PopulationGrowth.Foreachcageweestimated the
number of adults alive on each day (t) by determining
daily number of newly emerged adults (Bt) (based on
exuviae recovered), and daily number of deaths of
adults (Dt) (escapes and recovered dead bodies). On
any day, the number of adults alive (Nt) was simply
Nt-1 1 Bt ÐDt (Fig. 1). Intrinsic rate of increase (r) and
asymptotic density (K) for the adult population were
determined for each replicate cage using the logistic
growth equation:

Nt 5 F K

1 1 @~K 2 N0!/N0#e
2rtG , [1]

where Nt is the number of adults alive on day t1–120, K
is the asymptotic density for the adult population in
the cage, r is the intrinsic rate of increase for the adult
population in the cage, No is the initial number of
adults at the start of the experiment, and t ranges from
1 to 120 d. We set No 5 1 which is equivalent to
assuming that one female laid the eggs that produced
the 100 Þrst instars added to the cage (i.e., 50 per
beaker). This offspring number is greater than the
typical fecundity values for the Þrst gonotrophic cycle
of Ae. albopictus (42Ð88 eggs per blood meal, Hawley
1988), but it is well within egg counts observed for
individuals in the laboratory (S.A.J., unpublished
data). We used nonlinear regression (SAS Institute
1989, PROC NLIN; Juliano 1993) to estimate r and K
for each cage. For this analysis, our goal was not tests
of whether r and K for individual cages were signiÞ-
cantly different from 0. Rather, we were interested in
how temperature affected mean r and K for the rep-
licate cages. A one-way ANOVA with temperature as
a categorical variable was used to test for temperature

effects on estimates of r and K from experimental
cages.

Typically, calculations of the intrinsic rate of in-
crease (r) and carrying capacity (K) in a limited en-
vironment assume that nothing is added or subtracted
from the environment except food resources. This
eliminates the possibility that a population fails to
reach its carrying capacity due to resource limitation
(e.g., Brower et al. 1990). A population that reaches its
carrying capacity is assumed to be in a state of equi-
librium (i.e., births 5 deaths). Alternatively, in some
systems, resources are nonrenewable (e.g., space). In
these systems the concept of carrying capacity takes
on a different meaning. Carrying capacity is reached
after all available resources have been exhausted (e.g.,
Ricklefs 1984). In our experiment, we added larval
food resources only at the start of the experiment.
Therefore, it is likely that populations did not reach a
state of equilibrium with their resources. Therefore, K
should be thought of as asymptotic ormaximal density
of adults attained before a decline in the population
due to resource limitation.

Mortality and Emergence Rates. For all caged pop-
ulations, there was a distinct gap of several days be-
tweenemergenceof theF1 andF2 cohorts.During this
time, very few or no adults emerged, and F2 eggs,
larvae, and pupaewere developing. For each replicate
cage, we determined per capita daily mortality and
emergence rates of adults (sexes pooled) for the in-
terval from the start of emergence of the F2 cohort to
the day on which Nt was maximal. Per capita mortality
was calculated as the daily sum of dead and escaped
adults divided by the number of adults alive on the
previous day. Per capita daily emergence rate was
calculated as the daily sum of new adults from both
beakers, divided by the number of adults alive from
the previous day.

We Þrst tested whether per capita daily emergence
and mortality rates for each cage were density depen-
dent by Þtting an autoregressive time series model
(SAS Institute 1989, PROC AUTOREG, Rasmussen et
al. 1993) to data on rate versus density of adults (Nt).
For the emergence rate, it would have been ideal to
use density of larvae rather than density of adults in
this regression; however, the design of this study pre-
cluded daily counts of larvae in beakers, so for analysis
of density dependent emergence,weassumed that the
only daily estimate of abundance at our disposal, Nt,
providedan indexof theunmeasureddensityof larvae.
We Þt autoregressive models for the period from the
start of emergence of the second cohort to the day on
which Nt was maximal. Autoregressive time series
models area subsetof timeseries analyses andareused
for analyzing time-ordered sequences of observations
in which observations at one time period depend in
some way on previous observations (Rasmussen et al.
1993). The main virtue of these models is that they
provide unbiased estimates of slopes of regressions
when there is serial autocorrelation among observa-
tions (Neter and Wasserman 1974, SAS Institute
1989). In an autoregressive model, the value of an
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Fig. 1. Estimated number of adults based on daily emergences and daily adult mortality in each population at (a) 228C,
(b) 248C, and (c) 268C. Intrinsic rate of increase (r) and asymptotic density (K) for the adult population were determined
for each cage using the logistic growth equation.
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observed variable at time t (yt) is a linear function of
previous values (e.g., yt-1, yt-2, yt-3):

yt 5 f1yt21 1 f2yt22 1 f3yt23 1 . . . 1 «t , [2]

where «t is random error at time t, with mean 5 0 and
standard deviation 5 s. The coefÞcients f are anal-
ogous to regression slopes, but deÞne the relationship
between y values at time t and y values some number
of timeunits in thepast (Rasmussenet al. 1993). In our
data set,yvalues arepercapitamortalityoremergence
rates determined each day (t). We were interested in
whether there was any relationship between yt and
the density recorded at time t (Nt), so that the model
becomes:

yt 5 a 1 b Nt 1 f1yt21 1 f2yt22

1 f3yt23 1 . . . 1 «t , [3]

where b is the slope of the regression of per capita
mortality (yt) versus density (Nt) and a is the inter-
cept. Our goal was to test signiÞcant relationships
between per capita mortality or emergence rates and
density that were not biased by autocorrelation
(Neter and Wasserman 1974). We tested for signiÞ-
cant autocorrelation for observations 1Ð14 d before
the current observation.

Development Time and Size. Mean times to emer-
gence for males and females of the Þrst cohort were
determined for each replicate cage. We determined
the mean size of adult females from a cage at the
beginning and end of the experiment. The Þrst 10
females that died in each cage represent the Ôbegin-
ningÕ and a random sample of females remaining after
120 d were used for the Ôend.Õ Wing lengths from the
beginning also were compared with those from the
end for each cage.Wing lengthwas determinedby the
distance from the proximal edge of the costa to the
distal endof theR2 vein (adults dried for $24 at 608C).
When both wings of an individual were available, we
used the average length of the two wings. Wing
lengths were measured by a computer imaging system
using Image-Pro Plus software (Media Cybernetics,
L.P., Silver Spring, MD, version 3.0, 1993Ð1997).

Results

The cumulative amount of water added to beakers
did not differ signiÞcantly among the temperature
treatments (F 5 0.91; df 5 2, 5; P 5 0.4591;mean 6 SE:
228C 5 826.7 6 35.3ml, 248C 5 893.3 6 70.6ml, 268C 5
940.0 6 60.0 ml). There was an average of 22 water
additions to each replicate cage (i.e., water added to
either beaker) over the 120 d of the experiment.

Population Growth. Temperature signiÞcantly af-
fected r (F 5 24.50; df 5 2, 5; P 5 0.0026), with 268C
having the greatest r relative to 22 and 248C for the
adult populations (Fig. 2a). Temperature also signif-
icantly affected K (F 5 24.52; df 5 2, 5; P 5 0.0026),
withpopulations at 268Cattaining a signiÞcantly lower
K compared with the other two temperatures (Fig.
2b).

Mortality and Emergence Rates. For the mortality
rates, autocorrelations were signiÞcant in only two of
the cages, and, more importantly, we found no signif-
icant relationship between per capita adult mortality
and density (Table 1). Therefore, mortality rate ap-
peared tobedensity independent, soweestimated the
overall mortality rate for a cage as the mean across all
days, and tested for temperatureeffects on thesemean
daily mortality rates. For the per capita emergence
rate, autocorrelations were signiÞcant (six of eight
cages) and, more importantly, the per capita emer-
gence rate decreased signiÞcantly with density of
adults (Table 1). Therefore, the emergence rate of
adults was density dependent, and we analyzed the
temperature effect on the emergence rate by one-way
ANOVAs on the slopes and intercepts for emergence
rate versus adult density estimated for each cage from
the autoregressive time series models.

Mortality rate of adults was not signiÞcantly af-
fected by temperature (F 5 1.11; df 5 2, 5; P 5 0.4003)
(Table 2). Temperature signiÞcantly affected esti-
mates of slopes (F 5 128.12; df 5 2, 5; P 5 0.0001) and
intercepts (F 5 63.06; df 5 2, 5; P 5 0.0003) from the
autoregressive model of daily emergence rate against
adult density. Higher temperatures yielded steeper

Fig. 2. Means 6 SE for intrinsic rate of increase (r),
asymptotic densities (K), and time to emergence for females
and males of the Þrst cohort for the adult populations at 22,
24, and 268C. Means of temperature treatments followed by
the same letter are not signiÞcantly different. Points lacking
error bars indicate standard errors that were too small to
appear on the graph.
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negative slopes (i.e., more rapid decline of emergence
rate with density) and higher y-intercepts (i.e.,
greater initial emergence rates). All three tempera-
ture treatments were signiÞcantly different from one
another (Table 2).

Development Time and Size. Mean time to emer-
gence for the Þrst cohort was signiÞcantly affected by
temperature for both males (F 5 17.02; df 5 2, 5; P 5
0.0059) and females (F 5 33.81; df 5 2, 5; P 5 0.0012)
with both sexes developing signiÞcantly more slowly
at 228C compared with 248C and 268C (Fig. 2c). Size
of adult females either at the beginning (F 5 0.37; df 5
2, 5; P 5 0.7078) or end (F 5 1.44; df 5 2, 5; P 5 0.3205)
of the experiment was not signiÞcantly affected by
temperature (Table 2).Therewas a signiÞcantdecline
in size of females from beginning to end (F 5 26.27;
df 5 1,7; P 5 0.0014; Table 2), but the decline in size
did not differ signiÞcantly among temperatures (F 5
0.30; df 5 2, 5; P 5 0.7529; Table 2).

Discussion

Our results clearly show that temperature affects
thepopulationdynamics ofAe. albopictus.Populations
at 268C had greater intrinsic rates of increase (r) and
lower asymptotic densities (K) relative to populations
at the other two temperatures (Figs. 2a and 2b).
Greater intrinsic rate of increase (r) at 268C could
result if the adult emergence rate increased and larval
development time decreased with increased temper-
atures. Lower K at 268C could result if populations at
268C had greater daily mortality rates of adults, and
thus lower asymptotic densities, or resource depletion
and limitation in the aquatic habitats progressed more
rapidly at 268C, resulting in a steeper decrease in the

emergence rate with density of adults at the higher
temperature.

Populations at 24 and 268C did yield shorter devel-
opment times for emergence of the Þrst cohort (Fig.
2c). Also, we detected a signiÞcant temperature effect
on slope and intercept estimates for the regression of
per capita daily emergence rate against adult density.
We were unable to detect any temperature effects on
mean daily mortality rates of adults (Table 2), and
mortality appeared tobedensity independent. Several
authors have noted that death rates of adults are un-
likely to be density dependent in nature as well (e.g.,
Service 1985, Charlwood et al. 1995).

In this experiment, decaying plant material that
served as the resource base for larvae was added only
once. This simulates container habitats in the temper-
ate zone, which receive leaf inputs primarily during
autumn. It is likely that resource depletion and limi-
tation for larvae became more important as the ex-
periment progressed because of depletion of re-
sources addedat thebeginning (Gee1988,Richardson
1991). Rate of decay of leaf litter within containers,
andassociatedgrowthofmicrobial populations,which
are the actual food for Aedes (Fish and Carpenter
1982), may have increased with temperature, as ob-
served in other aquatic systems (Paul et al. 1978, Car-
penter and Adams 1979, Brock 1984). Therefore, it is
possible that greater microbial growth at 268C con-
tributed to the observed greater intrinsic rate of in-
crease (r) at 268C. Additional experiments are needed
to evaluate whether or not rate of leaf decay and
microbial growth do in fact contribute to the temper-
ature effects on Ae. albopictus population growth.

In our experiment, we expected higher tempera-
tures to yield smaller females, as in previous studies

Table 1. Estimated slopes from the autoregression analysis that relate per capita rates of emergence and mortality of adults to density
of adults for 22, 24, and 26°C

Temp,
8C

Cage
Per capita emergence rate Per capita mortality rate

Slope F df P Slope F df P

22 1 20.0004 11.75 1, 58 0.0011 20.000002 0.01 1, 58 0.9088
2 20.0003 4.99 1, 64 0.0289 20.000003 0.06 1, 64 0.8145
3 20.0003 10.98 1, 66 0.0015 0.000017 2.59 1, 66 0.1122

24 4 20.0014 14.58 1, 60 0.0003 20.000026 1.13 1, 60 0.2929
5 20.0008 13.64 1, 54 0.0005 20.000069 2.16 1, 54 0.1472
6 20.0010 59.82 1, 70 ,0.0001 0.000008 0.22 1, 70 0.6377

26 7 20.0036 62.90 1, 63 ,0.0001 20.000043 0.39 1, 63 0.5371
8 20.0033 5.87 1, 38 0.0202 20.000021 0.24 1, 38 0.6291

Table 2. Treatment means 6SE for mortality rate, emergence rate, and size of adult females at the beginning and end of the experiment

228C
(n 5 3 cages)

248C
(n 5 3 cages)

268C
(n 5 2 cages)

Mortality rate (adults/adult/d) 0.0087 6 0.0011a 0.0114 6 0.0016a 0.0124 6 0.0031a
Slope: Emergence rate (adults/adult/d) 20.0003 6 0.00003a 20.0011 6 0.00017b 20.0035 6 0.00017c
Intercept: Emergence rate (adults/adult/d) 0.1174 6 0.0019a 0.2910 6 0.0531b 0.6580 6 0.0010c
Female wing length (beginning), mm 2.63 6 0.09a 2.58 6 0.05a 2.53 6 0.14a
Female wing length (end), mm 2.36 6 0.08a 2.32 6 0.08a 2.14 6 0.10a

Treatment means 6SE for regression estimates of slopes and intercepts for per capita daily emergence rate versus adult density over the
period from Þrst emergence of the second cohort to the day on which maximum number of adults was attained. Means for a variable associated
with the same letter are not signiÞcantly different (Ryan-Einot-Gabriel-Welsch multiple range test a 5 0.05; SAS Institute 1989).
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(Day et al. 1990, Rueda et al. 1990). However, we did
not detect any temperature effects on the size of
females. This may be due to lack of statistical power
because of small sample size or using a limited range
of temperatures. Therefore, lack of an effect on size
indicates that size-dependent female fecundity should
be similar for these temperatures. Our data also indi-
cated no effect of temperature on adult mortality,
implying that temperature effects on fecundity via
longevity of femaleswere not present.We cannot rule
out other temperature effects on female fecundity,
such as more effective blood-feeding at greater tem-
peratures (Hurlbut 1973, Crans et al. 1996), because
we have no data on blood-feeding effectiveness.

Results from our study may have important impli-
cations for the current and future distribution of Ae.
albopictus in North America. Although temperature
effects on r and K from this experiment are unlikely to
be quantitatively accurate predictors of r and K in
natural populations, they may serve as useful indica-
tors of trends in r and K with ambient temperature in
nature. Populations of Ae. albopictus occurring in
warmer temperate regions (e.g., southern United
States) are likely to have greater intrinsic rates of
increase (r) and lower asymptotic densities (K).
These populations may be expected to peak early in
the season and to attain a relatively low peak density
of adults. In contrast, populations in cooler temperate
regions (e.g., northern United States) are likely to
have slower population growth, but more steady pro-
duction of adults throughout the active season, and
mayattain greater peakdensities. Temperature effects
on r may have the greatest consequences for spread of
Ae. albopictus in temperate regionswithdifferent tem-
peratures. Population dynamic theory (e.g.,
MacArthur and Wilson 1967, Ebenhard 1991, Hanski
1999) predicts that probability of successful coloniza-
tion of an empty site increases with increasing r, be-
cause rapid population increase enables a colonizing
population to grow quickly beyond the small popula-
tion sizes that render it vulnerable to stochastic ex-
tinction. Based on this theory, we would expect the
spread of Ae. albopictus to new sites to be slowed in
northern temperate regions by cooler summer tem-
peratures associated with increasing latitude. Addi-
tional factors, such as patterns of precipitation, winter
temperatures and their effects on population survival,
and season length also may inßuence regional differ-
ences in the dynamics and spread of Ae. albopictus
(Hawley 1985, Pumpuni et al. 1992, Washburn and
Hartmann 1992, Focks et al. 1994, Hanson and Craig
1995).

Increased temperature associated with climate
change, when considered alone, seems likely to ex-
pand the region of North America that is suitable for
Ae. albopictus. Warmer winter temperatures should
reducewintermortality (Pumpuni et al. 1992, Focks et
al. 1994, Hanson and Craig 1995). Warmer summer
temperature should favor earlier, more rapid produc-
tion of adults, and yield an increase in the rate of
spread of Ae. albopictus to new sites by increasing r,
and thus increasing the likelihood of successful colo-

nization. Because effects of climate change will in-
clude changes in humidity and precipitation
(Nawrocki and Hawley 1987, Schneider 1993, Vi-
tousek 1994), in addition to changes in temperature,
these predictions concerning spread of Ae. albopictus
must be viewed as preliminary. Humidity and the
pattern and amount of precipitation also play impor-
tant roles in population dynamics of mosquitoes (e.g.,
Moore 1985), and are likely to interact with temper-
ature in their effects on population dynamics. Fur-
thermore, patterns of precipitation and temperature
covary in nature. Accurate predictions of the effect of
current and future climate on population dynamics
and spread of Ae. albopictus will require experimental
evaluation of multiple environmental factors on the
entire life cycle of this species.
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