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Abstract

Florida faces the challenge of repeated introduction and autochthonous transmission of
arboviruses transmitted by Aedes aegypti and Aedes albopictus. Empirically-based predic-
tive models of the spatial distribution of these species would aid surveillance and vector con-
trol efforts. To predict the occurrence and abundance of these species, we fit a mixed-
effects zero-inflated negative binomial regression to a mosquito surveillance dataset with
records from more than 200,000 trap days, representative of 53% of the land area and rang-
ing from 2004 to 2018 in Florida. We found an asymmetrical competitive interaction between

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009063 March 25, 2021

1/21


https://orcid.org/0000-0002-1429-7365
https://orcid.org/0000-0002-9437-1907
https://doi.org/10.1371/journal.pntd.0009063
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pntd.0009063&domain=pdf&date_stamp=2021-04-16
https://doi.org/10.1371/journal.pntd.0009063
https://doi.org/10.1371/journal.pntd.0009063
https://creativecommons.org/publicdomain/zero/1.0/
https://creativecommons.org/publicdomain/zero/1.0/
https://github.com/UF-IDD/Modeling_Aedes_Florida
https://github.com/UF-IDD/Modeling_Aedes_Florida
https://power.larc.nasa.gov
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation
https://www.ncdc.noaa.gov/cdo-web/datatools/findstation

PLOS NEGLECTED TROPICAL DISEASES

Modelling distributions of Aedes aegyptiand Aedes albopictus

International Earth Science Information (http://
sedac.ciesin.columbia.edu).

Funding: This project was supported by CDC
Southeastern Center of Excellence in Vector-borne
Diseases (CDC Cooperative Agreement
U01CK000510). M.U.G.K. is supported by The
Branco Weiss Fellowship - Society in Science,
administered by the ETH Zurich and acknowledges
funding from a Training Grant from the National
Institute of Child Health and Human Development
(T32HD040128) and the National Library of
Medicine of the National Institutes of Health
(RO1LMO010812, RO1LIMO11965). The opinions
expressed in the paper are those of the authors and
do not necessarily represent the views of the
United States Government. The funders had no role
in study design, data collection and analysis,
decision to publish, or preparation of the
manuscript.

Competing interests: The authors declare no
competing financial interests.

adult populations of Aedes aegyptiand Aedes albopictus for the sampled sites. Wind speed
was negatively associated with the occurrence and abundance of both vectors. Our model
predictions show high accuracy (72.9% to 94.5%) in validation tests leaving out a random
10% subset of sites and data since 2017, suggesting a potential for predicting the distribu-
tion of the two Aedes vectors.

Author summary

Aedes aegypti and Aedes albopictus are two prime mosquito vectors that transmit emerg-
ing arboviral pathogens (e.g. dengue virus, Zika virus and chikungunya virus), which
cause substantial disease burden in humans. This study attempts to improve previous
studies to map the distribution of Ae. aegypti and Ae. albopictus with greater validation
and provide a finer resolution of current and future projections of mosquito populations.
We found evidence of an asymmetrical competitive interaction between Aedes vectors
where Aedes aegypti is suppressed by Aedes albopictus. In addition to the role of species
interactions, abiotic factors, including meteorological factors and human population den-
sity, are important predictors of the distribution of these two Aedes mosquito species. Our
models demonstrate the potential to predict the occurrence and abundance of the two
Aedes vectors, which can enhance domestic mosquito control efforts.

Introduction

Aedes mosquitoes, in particular, Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse), are the
primary vectors of multiple arboviruses including dengue virus (DENV), Zika virus (ZIKV),
yellow fever virus, and chikungunya virus (CHIKV)[1-3]. The incidence of these viruses in
humans is driven, in part, by the close overlapping habitats of humans and these vectors [4]. In
the absence of effective vaccines, reducing contact between mosquitoes and humans through
targeted mosquito control is regarded as the most effective approach to reducing the risk of
mosquito-borne arbovirus transmission. There have been several efforts to create large-scale
estimates of the spatial presence and abundance of these vectors using a variety of collection
methods and data from literature reports and entomological surveys of mosquito occurrence
[5,6]. Global maps have been generated using climate and socio-economic variables, relying
on a strong dependence of mosquito populations to temperature and rainfall [7-9]. These
efforts have uncertainty associated with publication bias and variability of collection methods.
Large-scale data collected by standardized surveillance methods could improve the certainty
and precision of occurrence and abundance maps.

Florida has suffered from the introduction and autochthonous transmission of DENV
[10,11], CHIKV [12] and ZIKV [13,14] and remains at high risk of transmission due to
repeated pathogen introductions, high densities of Ae. aegypti and Ae. albopictus [7] and
favourable meteorological conditions [13,15]. Studies have shown a positive relationship
between human Zika and dengue cases and larger Ae. aegypti populations in urban areas
[13,16]. Therefore, characterizing the population size of the two Aedes species over time and
space could aid in examining the risk of local arbovirus transmission and spread in Florida
and inform more effective and targeted mosquito control efforts.

Although coexistence of the two Aedes vectors is reported [17], declining populations and
displaced habitats of Ae. aegypti have been observed in several places, including Florida [3,18-

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009063 March 25, 2021

2/21


https://doi.org/10.1371/journal.pntd.0009063
http://sedac.ciesin.columbia.edu
http://sedac.ciesin.columbia.edu

PLOS NEGLECTED TROPICAL DISEASES Modelling distributions of Aedes aegyptiand Aedes albopictus

20]. In particular, the habitats of Ae. aegypti were restricted to urban areas while those of Ae.
albopictus were found to increase in suburban and rural areas in Florida [21]. The proposed
mechanisms for the displacement of Ae. aegypti include species interactions such as the superior-
ity of Ae. albopictus to compete for resources at the larval stage and asymmetric sterilization at
the adult stage after interspecific mating, which favours Ae. albopictus [1,3,22]. Previous studies
modelled the current spatial distribution of Ae. aegypti and Ae. albopictus by applying boosted
regression trees to a comprehensive global database of Aedes occurrence [5,7] and characterized
the spatial and temporal abundance of the two Aedes species in a local southern Florida county
[23-28]. In this study, we build on these previous findings by incorporating longitudinal data col-
lected from a standardized format, providing information on both occurrence and absence with
the temporal component. Additionally, a recent systematic review [29] reported inconsistent
findings on the associations between the species interactions between Ae. aegypti and Ae. albopic-
tus and meteorological factors, we therefore consider these factors in our model.

The objective of this study was to simultaneously characterize the occurrence and abun-
dance of the Ae. aegypti and Ae. albopictus mosquitoes using routine mosquito surveillance
data in Florida. To estimate if mosquitoes were present or not and, if present, the number of
adults in each trap location, a mixed-effects zero-inflated negative binomial (ZINB) regression
was performed. Various predictors were examined, like climate and human population density
covariates, and their potential impact on Ae. aegypti and Ae. albopictus spatial and temporal
abundance. In order to evaluate to what extent the model can provide accurate predictions we
assessed the performance of the models by validating them against independent data withheld
from the model fitting process, especially without the benefits of pre-existing knowledge on
abundance and localized spatial variations.

Methods
Mosquito surveillance data

Statewide surveillance data on 16 Aedes species were obtained by networking with Florida’s mos-
quito control districts, Clarke Scientific, the Florida Department of Agriculture Consumer Ser-
vices, and the Florida Department of Health. Each control district is required to trap mosquitoes
prior to conducting their control efforts by Florida Statutes 388 and 482. The traps were placed to
acquire a representative sampling of the district including baseline traps placed in the same loca-
tion annually, at risk areas due to environmental factors like increased standing water, locations
within areas of known arbovirus transmission, and frequent areas of complaint. Information col-
lected from these traps includes the species-identified count of the trapped adult mosquitoes
(total number were calculated where male and female were recorded seperately), date and dura-
tion of collection, type of trap (i.e. BG-Sentinels, light traps and other types; details in S1 Table)
used, and coordinates of the trap sites. The collected mosquitoes were identified to species level
according to standardized mosquito keys [30]. For missing data, the duration of collection was
assumed to be one day, according to the common trapping practices, and coordinates were
extracted from Google Maps based on the address of the site. The full dataset was aggregated to
include data on adult Ae. aegypti and Ae. albopictus, two vectors that transmit arboviruses, on a
weekly basis. The longitudinal training dataset for the ZINB regression model was extracted from
the full dataset and included only data collected from sites with at least four consecutive weeks of
surveillance and no missing explanatory variables (S1 Fig).

Abiotic variables

To examine the potential effects of meteorological factors on the trap rate of the two Aedes spe-
cies, temperature ("C), wind speed (meter per second) and relative humidity (%) were included
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in the model. We obtained the daily meteorological data for Florida from the regional data of
NASA Prediction of Worldwide Energy Resources [31] and applied the inverse distance weight-
ing method [32] to interpolate the daily weather raster of Florida with a 5 kmx5 km resolution.
To examine the effect of data source, interpolation and spatial resolution on our results, we also
conducted sensitivity analyses using meteorological data from National Oceanic and Atmo-
spheric Administration (NOAA, 5 kmx5 km) and Daily Surface Weather and Climatological
Summaries (Daymet, 1 kmx1 km) [33,34]. Data from NOAA was available for stations that were
disproportionately distributed in densely populated places, and we interpolated these data using
the above-mentioned inverse distance weighting. We downloaded the Daymet data using the
coordinates and “daymetr” package [35] without interpolation. The weekly average of weather
conditions was calculated as the mean of the weather conditions on the days the traps were col-
lected. To account for the collinearity of the maximum and minimum temperature, we used the
residuals of the linear regression of maximum temperature on minimum temperature as a proxy
of the maximum temperature in the model, which was calculated as AT, = Tax—(0+B8T i)
where T,,,, and T,,;, denoting the observed maximum and minimum temperature, respectively,
while @ and 3 were estimated from the linear regression. We used human population density as a
proxy for urbanization. We used data on population density obtained from the Center for Inter-
national Earth Science Information Network with a 5 kmx5 km resolution for the year 2015 [36].
If the value was missing for a site, we extracted the corresponding environmental variables based
on its coordinate and used the average drawn from a 5km buffer around the site.

Statistical methods

We applied a ZINB regression model to the weekly abundance of Ae. aegypti and Ae. albopictus
from the longitudinal training dataset, respectively, to account for the excessive zeros in the abun-
dance data and the over-dispersed count of trapped mosquitoes, simultaneously. The ZINB
model comprises a binary component (corresponding to the absence/presence of mosquitoes),
and a negative binomial component (corresponding to the abundance of mosquitoes). The esti-
mates from the binary component (presented as odds ratio, OR) and the negative binomial com-
ponent (presented as incidence rate ratio, IRR) represent the associations between the covariates
and the occurrence and abundance of these Aedes vectors, respectively. The potential factors
included in the ZINB model for both species are: the previous abundance of Ae. aegypti and Ae.
albopictus up to three weeks prior (in log-scale), weekly site-specific meteorological factors (i.e.
wind speed, minimum temperature, the residual of maximum and relative humidity), human
population density (in log-scale) and type of mosquito traps (i.e. BG-Sentinels, light traps and
other types). We examined the potential interaction between Ae. aegypti and Ae. albopictus by
examining the relationship between the current abundance of one species with the previous
abundance of the other species. We used counts of each species detected in recent weeks to pre-
dict future weeks. To do this, we only considered records when data was available for four conse-
cutive weeks prior. Trap type was included as an explanatory covariate as each of the traps used
has a different effectiveness in trapping each species. We also included the random effects at both
site level and county level, which were modelled for both components of the ZINB model simul-
taneously. The detailed equations used for the ZINB model are provided in the S1 Text. Parame-
ters were estimated by maximizing the likelihood using “glmmTMB” package [37] in R version
3.5.0 (R Foundation for Statistical Computing, Vienna, Austria).

Goodness of fit of the model

We assessed the goodness of fit of the model by comparing the observations with the predic-
tions of occurrence and abundance from the longitudinal dataset. We assessed the spatial
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pattern by calculating the site-specific mean of differences between observations and predic-
tions. The absence and presence were assigned as 0 and 1 respectively for calculation purposes.
Moran’s I was calculated to assess the spatial autocorrelation of Aedes distribution [38]. We
examined the temporal pattern of the model fitting by assessing the monthly 2.5% and 97.5%
percentile of the difference between the predicted and observed abundances for the two Aedes
species.

Cross-validations

We also performed cross-validation of the model both spatially and temporally. Prediction of a
test set was based on a model fit from a training set and comparing the predicted and observed
occurrence and abundance. In the spatial prediction, we randomly selected records from 127
(around 10% of total) sites to be the spatial testing set and used the records from the remainder
of the sites as a spatial validation training set (S1 Fig). In the temporal prediction, we used data
up to the year of 2017 as the temporal validation training set to predict data after 2017 (S1 Fig).
The area under the receiver operating characteristic (AUC) was used to measure the perfor-
mance of prediction on the mosquito occurrence, using the predicted probability of the occur-
rence as the predictor. In order to assess the accuracy of predictions on abundance, we divided
the observed and predicted trap rate (r, per trap day) into four categories, i.e. r = 0, 0<r<10,
10<r<100 and r>100. We define the predictions on abundance as correct if the predicted
abundance category is the same with observed abundance category. The proportion of correct
predictions were calculated by dividing the number of correct predictions on abundance by
the number of traps where the mosquito was found and predicted to occur (excluding the
impact of misclassifications of presence/absence).

Utility of model prediction

In order to assess the model utility in predictions, we first compared the observations of occur-
rence and abundance from the longitudinal dataset with predictions using models that incor-
porate 1) both random effects and prior abundance information, 2) random effects only (“no
abundance model”), 3) prior abundance information only and 4) none of random effects and
prior abundance information. All models accounted for climate factors, human population
density and trap types. We evaluated whether the proportion of the predicted presence and
abundance categories were consistent with observations. In addition, to test the model’s utility
for real-time prediction, we used the “no abundance model” fit using longitudinal data to pre-
dict an external “no abundance testing dataset” (S1 Fig) and compared the predictions with
observations. The no abundance testing dataset consists of the surveillance records in the full
dataset that failed on the four consecutive four-week criteria (S1 and S2 Figs). We also assessed
the performance of predictions calculated by removing the random effects estimates of the “no
abundance model” in order to illustrate the mean trap rate in Florida.

Results

We integrated a full dataset from counties in Florida that contains 180,242 weekly records and
representative of around 102,000 km? (73% of Florida) between 2004 and 2018 (S1 and S3
Figs). From the full dataset, we extracted a longitudinal training dataset that only included
data collected from sites where at least four consecutive weeks of surveillance were available.
The longitudinal training dataset included 132,088 weekly records from 1,246 unique sites for
Ae. aegypti and Ae. albopictus, covering 33 out of 67 counties from 2004 to 2018. The land area
covered by the counties that we have data for represents 53% of the land area in Florida

(Table 1 and S1 and S3 Figs and S1 Video). Traps were typically set for one day but a minority
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of collaborators reported counts from a trap that was set for multiple days (7.4%). Approxi-
mately 87.4% and 84.8% of trap episodes reported no adults collected for Ae. aegypti or Ae.
albopictus, respectively. The majority (81.4%) of traps used were light traps, and the remaining
7.3% and 11.3% of traps used were BG Sentinel traps or other mosquito traps (Tables 1 and
S1), respectively. A wider distribution range and higher trap rate was reported for Ae. albopic-
tus compared to Ae. aegypti in Florida, and, as expected from previous studies, most Ae.
aegypti were reported in central and southern Florida (Figs 1 and S3). Both Ae. aegypti and Ae.
albopictus were trapped more often between May to October (S3 Fig and S1 Video).

The median human population density at the locations where the traps were set is 480.8
persons per km? (Interquartile range (IQR), 112.5 to 1,165.2 km?) (S4 and S5 Figs). The
median weekly average wind speed was 5.4 meters per second (IQR, 4.5 to 6.6 m/s), and the
median relative humidity was 76.7% (IQR, 73.1 to 80.1%) (S4 Fig). The minimum temperature
of the time when the trap was set ranged from 18.7 to 25.8°C with a median of 23.0°C.

Presence and abundance of Aedes

The results from ZINB regression suggested the probability of presence of Ae. aegypti and Ae.
albopictus in the current week was positively associated with their respective abundance in the
previous week. (Table 2). The abundance of both Aedes species was more likely to be higher if a
higher abundance was reported for its own species (e.g. Incidence rate ratio (IRR) 1.03 and 1.02
for one week prior for the two vectors, respectively) (Table 2). The abundance of Ae. aegypti was
negatively associated with the abundance of Ae. albopictus in the last three weeks (IRR: 0.992,
0.994 and 0.990 for one, two and three weeks earlier, respectively), while the abundance of Ae.
albopictus was not associated with the previous abundance of Ae. aegypti (Table 2).

We found both the presence (Odds ratio (OR): 0.98, 95% confidence interval (CI) 0.95 to
1.01 and 0.97, 95% CI, 0.95 to 0.99, respectively) and abundance (IRR: 0.97, 95% CI, 0.96 to
0.99 and 0.97, 95% CI, 0.95 to 0.98, respectively) of Ae. aegypti and Ae. albopictus were nega-
tively associated with the average wind speed of the week, although such association was not
significant for the presence of Ae. aegypti. Minimum temperature was positively associated
with the occurrence (OR: 1.08, 95% CI, 1.07 to 1.09) for Ae. albopictus and the abundance
(IRR: 1.13,95% CI, 1.12 to 1.14 for Ae. aegypti and 1.09, 95% CI, 1.08 to 1.10 for Ae.

Table 1. Characteristics of surveillance of Aedes aegypti and Aedes albopictus in Florida, 2004-2018.

Characteristic Number (%)
Longitudinal training dataset No abundance testing dataset
Number of Counties 33 48
Number of Sites 1,246 2,791
Number of Trap-days 235,677 57,469
Records 132,088 45,535
Aedes aegypti
Absence 115,447 (87.4%) 39,384 (86.5%)
Presence 16,641 (12.6%) 6,151 (13.5%)
Aedes albopictus
Absence 112,021 (84.8%) 35,667 (78.3%)
Presence 20,067 (15.2%) 9,868 (21.7%)
Trap Types
Light trap 107,571 (81.4%) 31,176 (68.5%)
BG Sentinel 9,518 (7.2%) 5,648 (12.4%)
Other trap types 14,999 (11.4%) 8,711 (19.13%)

https://doi.org/10.1371/journal.pntd.0009063.t001
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Fig 1. Locations of traps and geographic variation in abundance of Aedes aegypti (A) and Aedes albopictus (B) in Florida. Color (red for Ae. aegypti, blue for Ae.
albopictus) indicates mean abundance per trap day in each county. Diagonal lines indicate counties without data. Inset (C) shows the location of Florida (orange) in the
contiguous US. Plot (D) shows Ae. aegypti versus Ae. albopictus abundances in each county. Maps produced using QGIS Version 3.0.2 (QGIS Development Team, 2018).
Source of shapefile: Southwest Florida Water Management District (https://geodata.myflorida.com/datasets/swfwmd::florida-counties).

https://doi.org/10.1371/journal.pntd.0009063.9001

albopictus). Residuals of maximum temperature was found to be negatively associated with the
abundance of Ae. aegypti (OR: 0.91, 95% CI, 0.87 to 0.95) but positively associated with the
abundance of Ae. albopictus (OR: 1.04, 95% CI, 1.00 to 1.08) (Table 2). We found the relative
humidity was negatively associated with the abundance of Ae. aegypti (IRR: 0.99, 95% CI, 0.98
to 1.00) and the occurrence of Ae. albopictus (IRR: 0.99, 95% CI, 0.98 to 0.99). Model estimates
using climate data from alternative sources were similar to our main results, except for the pos-
itive associations between maximum temperature and the abundance and presence for both
species (S2 and S3 Tables). Greater precipitation was positively associated with the abundance
for Ae. aegypti (IRR: 1.42, 95% CI, 1.26 to 1.59), but not associated with the probability of pres-
ence (OR: 0.85, 95% CI, 0.69 to 1.05 for Ae. aegypti and 1.05, 95% CI, 0.94 to 1.19 for Ae. albo-
pictus, respectively) (S2 Table).

Both the probability of presence (OR: 0.95, 95% CI, 0.94 to 0.97) and abundance (IRR: 0.98,
95% CI, 0.97 to 1.00) of Ae. albopictus were negatively associated with a higher human popula-
tion density, while the probability of the presence of Ae. aegypti was positively associated with
human population density (OR: 1.05, 95% CI, 1.03 to 1.07). The probability of presence and
abundance of Ae. agypti and Ae. albopictus was lower when using light traps and other trap
types, compared to using BG traps (Table 2). We also found substantial heterogeneities of pres-
ence and abundance of these two Aedes species across trap sites and counties (Table 2). The
heterogeneity was greater at the county level (random effects (RE): 12.27 for Ae. aegypti and
6.59 for Ae. albopictus) compared to the site level for both species.

Goodness of fit of the model

We compared the predictions from the main ZINB model with observed presence and abun-
dance from the longitudinal training datasets (Figs 2 and S6 and S2 Video). Overall, our model
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Table 2. Estimates of odds ratio (OR) and incidence rate ratio (IRR) from mixed-effects zero-inflated negative binomial analysis of Aedes aegypti and Aedes albopic-

tus in Florida, 2004-2018.

Variables

Previous Ae. aegypti abundance/presence (per trap-day)
Trap rate in week ¢-1
Trap rate in week -2
Trap rate in week -3
Previous Ae. albopictus abundance/presence (per trap-day)
Trap rate in week ¢-1
Trap rate in week -2
Trap rate in week -3
Human population density (100 persons per km?)
Meteorology
Average wind speed (m/s)
Minimum temperature (°C)
Residual of maximum temperature (°C)
Relative humidity (%)
Trap type
BG sentinel
Light trap
Other
Random effects
Site
County

Dispersion parameter

* P <0.05.

 Credible interval.

Aedes aegypti
OR (95% CI")

2.46 (2.19, 2.76)"
2.36 (2.11, 2.65)*
1.84 (1.64, 2.07)*

1.30 (1.16, 1.47)*
1.44 (1.29, 1.62)*
1.28 (1.14, 1.44)*
1.05 (1.03, 1.07)*

0.98 (0.95, 1.01
1.01 (0.99, 1.02
1.12 (1.03, 1.21
1.01 (1.00, 1.02

*

— = | —= |~

Ref.
0.00 (0.00, 0.01)*
0.01 (0.00, 0.02)*

1.34
12.27

IRR (95% CI")

1.03 (1.02, 1.03)*
1.03 (1.03, 1.03)*
1.02 (1.01, 1.02)*

0.99 (0.99,1.00)*"
0.99 (0.99,1.00)*"
0.99 (0.99,1.00)* "
1.00 (0.99, 1.02)

0.97 *
1.13
0.91
0.99

0.96, 0.99
1.12,1.14
0.87,0.95)*
0.98,1.00)*"

)
)

s

~ ||~

Ref.
0.40 (0.31, 0.51)"
0.20 (0.14, 0.29)*

1.67
2.82
1.46 (1.42, 1.51)

Aedes albopictus
OR (95% CI")

1.21 (1.10, 1.34)*
1.42 (1.28, 1.57)*
1.04 (0.94, 1.15)

2.48 (2.32, 2.65)*
2.19 (2.05, 2.35)*
1.68 (1.57, 1.80)*
0.95 (0.94, 0.97)*

0.97 (0.95, 0.99)*
1.08 (1.07, 1.09)*
1.01 (0.95, 1.06)

0.99 (0.98, 0.99)*

Ref.
0.77 (0.60,1.00)*
1.77 (1.28, 2.44)

1.40
6.59

IRR (95% CI")

1.00 (1.00, 1.01)
1.00 (0.99, 1.00)
1.00 (1.00, 1.01)

1.02 (1.02, 1.03)*
1.02 (1.01, 1.02)*
1.02 (1.01, 1.02)*
0.98 (0.97,1.00)*"

0.97 (0.95, 0.98)*
1.09 (1.08, 1.10)*
1.04 (1.00,1.08)*"
1.00 (0.99, 1.00)
Ref.

0.29 (0.24, 0.36)*
0.25 (0.19, 0.33)*

0.90
1.56
1.13 (1.10, 1.17)

+ The values with three effective digits for these estimates are (from right to left by row): 0.992 (0.987, 0.998), 0.994 (0.988, 0.999), 0.990 (0.985, 0.996), 0.984 (0.969,
0.998), 1.041 (1.001, 1.083), 0.986 (0.979, 0.994) and 0.775 (0.600, 0.999).

https://doi.org/10.1371/journal.pntd.0009063.t002

fits well with both the occurrence and abundance estimates for Ae. aegypti and Ae. albopictus
(Figs 2 and 3). Places where inconsistent predictions and observations on presence/absence
were observed are places with higher trap rates of the two species (Fig 2). We observed that
91.1% (95% CI, 91.0% to 91.3%) and 84.9% (95% CI, 84.7% to 85.1%) of the predicted pres-
ence/absence was consistent with the observations of Ae. aegypti and Ae. albopictus, respec-
tively (S4 Table). Similarly, 78.7% (Ae. aegypti, 95% CI, 77.9% to 79.4%) and 84.9% (Ae.

albopictus, 95% CI, 84.3% to 85.5%) of the predicted abundance was consistent with the obser-
vations among traps where the mosquito was captured and predicted to be present (54 Table).
The values of Moran’s I are 0.47 (p < 0.01) and 0.08 (p = 0.02) for Ae. aegypti and Ae. albopic-
tus, respectively, and is -0.03 (p = 0.81) for Ae. aegypti after removing data from Miami-Dade
(S5 Table). Temporal differences and average trap rates were relatively higher between May
and September for both species (S6 Fig).

Cross-validations

We performed the cross-validations both spatially (i.e. holding out 10% of sites) and tempo-
rally (i.e. holding out data after 2017). For spatial (Fig 3A) and temporal (Fig 3D) cross-valida-
tions, the model predictions are highly consistent with the observed presence of both Ae.
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Fig 2. Geographic variations in model predictions in occurrence and abundance of Aedes aegypti and Aedes albopictus. (A) Differences in occurrence of Ae.
aegypti. (B) Differences in occurrence of Ae. albopictus. (C) Differences in abundance of Ae. aegypti. (D) Differences in abundance of Ae. albopictus. Each trap
site may have multiple predictions from different time points, so values presented here are the mean differences between predictions and observations for each
trap site. Maps produced using QGIS Version 3.0.2 (QGIS Development Team, 2018). Source of shapefile: Southwest Florida Water Management District
(https://geodata.myflorida.com/datasets/swfwmd::florida-counties).

https://doi.org/10.1371/journal.pntd.0009063.9g002

aegypti (AUC: 0.93 and 0.92 for spatial and temporal, respectively) and Ae. albopictus (AUC: 0.85
and 0.76 for spatial and temporal, respectively). Overall, 72.1% (Ae. aegypti, 95% CI, 69.3% to
74.9%) and 75.3% (Ae. albopictus, 95% CI, 72.9% to 77.6%) of the predicted abundance are con-
sistent with the observations among traps where the mosquito was captured and predicted to be
present for the spatial validation, while the percentages are 91.1% (Ae. aegypti, 95% CI, 87.9% to
93.7%) and 100% (Ae. albopictus, 95% CI, 86.8% to 100%) for the temporal validation (S6 Table).

Utility of model prediction

In order to assess the minimum information needed for the model to provide accurate predic-
tions, we fit the different models incorporating various combinations of random effects and
prior abundance information. We found greater reductions in goodness of fit when only ran-
dom effects were removed than when only removing prior abundance information (Fig 4 and
S4 Table). The goodness of fit was reduced by 15.0% (Ae. aegypti) and 26.1% (Ae. albopictus)
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Fig 3. Model performance of predictions in occurrence and abundance of Aedes aegypti and Aedes albopictus for cross-validations. (A-C) Records from 10% of
trap sites were randomly selected as the test set and records from the rest of the traps were the training set. (D-F) Records from 2003 to 2016 were selected as the test
set and records during and after 2017 were in the training set. The model was fit to the training set and predicted the test set.

https://doi.org/10.1371/journal.pntd.0009063.g003

for the model simultaneously when removing random effects and prior abundance compared
to the model that included both.

Using the model that included random effects but not prior abundance information (“no abun-
dance model” hereafter), we predicted the trap rate of Ae. aegypti and Ae. albopictus at all points in
the state in 2018 with BG traps (Figs 5 and S7 and S7 Table). Results in Fig 5 show the predictions
incorporating random effects and represent systematic differences in trap rates by county (Fig 5A
and 5B). The predictions from fixed effects, which represent the mean trap rate, can capture more
temporal trends than spatial heterogeneity in Florida (Fig 5C and 5D). We further conducted vali-
dation of the above predictions with the no abundance testing dataset (S1 Fig), which is an external
dataset that was not used for model training. The performance of model incorporating random
effects was better (AUC: 0.90 for Ae. aegypti and 0.85 for Ae. albopictus) than predictions of only
fixed effects (AUC: 0.81 for Ae. aegypti and 0.75 for Ae. albopictus) (S7 Fig and S7 Table).

Discussion

We built models using more than 132,000 routine mosquito surveillance records from 33
counties in Florida collected from 2004 to 2018 to characterize and predict the occurrence and
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Fig 4. Model performances for different combinations of random effects and prior abundance information.
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abundance of Ae. aegypti and Ae. albopictus. Our analysis is set apart by the extensive localized
data set that was collated from counties throughout Florida, which strengthens the predictive
power of our model. Our model performed well, particularly considering the stochastic nature
of mosquito populations, trap efficiency and small-scale trap locations. We modelled random
effects across sites and counties to account for unmeasured abiotic factors, inconsistencies,
and randomness and found the highest random effect was for the probability of presence at
the county level, suggesting great heterogeneity of occurrence across counties possibly down
to differences in varying micro-scale environment, surveillance, and domestic mosquito con-
trol across counties.

Our results suggest a broad distribution of Ae. albopictus in Florida, while Ae. aegypti was
more likely to be found in counties in southern Florida, a pattern similar to reports during the
past two decades [17]. Such results were consistent when using different sources of climate
data. This is also consistent with previous observations about the declining population of Ae.
aegypti after the invasion of Ae. albopictus in the southern United States [21,39]. However,
there is some evidence to suggest limited local recoveries of Ae. aegypti in relation to Ae. albo-
pictus, in part, attributable to evolution of resistance to satyrization [1,17,40,41]. Our findings
on the positive association between the probability of presence of adult mosquitoes of the two
Aedes species suggest their niches have some overlap, particularly in urban areas [42]. This is
supported by the observed coexistence of Ae. aegypti and Ae. albopictus in Florida [3,23,39]
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Fig 5. Maps of predicted abundance of Aedes aegypti (red, A and C) and Aedes albopictus (blue, B and D) on August 1,
2018 in Florida. Predictions are derived from “no abundance model”. Parts A and B show results incorporating
random effects which represents differences in trapping counts by county. Parts C and D show results only
incorporating fixed effects. Predictions for each month in 2018 are shown in S3 Video. E-H, points and vertical lines
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produced using R Version 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria). Source of shapefile:
Southwest Florida Water Management District (https://geodata.myflorida.com/datasets/swfwmd::florida-counties).

https://doi.org/10.1371/journal.pntd.0009063.g005

and the similar breeding behavior of the two species [43]. The abundance of Ae. aegypti was
negatively associated with the previous abundance of Ae. albopictus, with the greatest effective
size observed for the abundance of Ae. albopictus during the previous three-week period.
These results suggest competitive interactions between the two species. A previous study
revealed the breeding preference of Ae. aegypti in habitats without Ae. albopictus [43]. Our
findings support the hypothesis that the two Aedes species can coexist but the abundance of
adult Ae. aegypti are suppressed due to its failure to outcompete at the larval stage and/or the
impact of interspecific mating [3,22,40]. Evolution of resistance to interspecific mating (i.e.,
satyrization-resistance) in Ae. aegypti populations is likely to promote coexistence [1]. Future
control efforts targeting the Aedes species, especially Ae. albopictus, need to consider the risk
of resurgence of Ae. aegypti, which has been documented in Brazil [2], and could be possible
in Florida considering recent reports of the rapid evolution of satyrization-resistant aegypti
[1], coupled with an observed increased in insecticide resistance as compared to Ae. albopictus
[44].

We found the presence and abundance of Ae. albopictus are negatively associated with
human population density, while the presence of Ae. aegypti was positively associated with the
human population density, which matches with reports that anthropophilic Ae. aegypti are
more likely to be found in urban areas and Ae. albopictus has wider range of habitats including
peri-urban, vegetated and rural areas [3,45], mostly due to its wide range of host preference
and a greater adaptation to different climates [39]. Land cover status, which is an important
predictor of distribution of these species by other reports [7,46], was not included in our main
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analysis as it may be associated with the human population density and the vast majority of the
Ae. aegypti were collected in developed areas with a large human presence, consistent with
other studies [47,48]. The observed positive association between human and Ae. aegypti densi-
ties has practical implications for targeted mosquito control because these areas represent the
greatest risk for arboviral infections (e.g., dengue [49]).

Elevated abundance of both species between May and October has also been reported. This
timeframe corresponds to Florida’s rainy season, associated availability of breeding sites, and a
warmer temperature [23]. Related to these abiotic factors, the negative association between
wind speed and the presence and abundance of both species can be explained by high wind
speed hindering the effective trapping of the mosquitoes [50,51]. Traps are more likely to
under-catch mosquitoes on windy days. Likewise, mosquito host-seeking activity has been
shown to be impacted by higher wind speeds, which is presumably due to the wind’s influence
on flight distance, pattern, and poor dispersal of the CO, plume over both short and long
distances.

Furthermore, our results suggest positive associations between the minimum temperature
and the observed abundance of adult Ae. aegypti and Ae. albopictus when using the NOAA
data. However, inconsistent findings on the association between the residuals of maximum
temperature and the abundance of Ae. aegypti was found when using the NASA data. One
study suggested higher tolerance of low temperatures in adult Ae. aegypti compared to Ae.
albopictus leading to a relatively lower mortality of adult Ae. aegypti at low temperatures and a
milder effect of temperature on the presence of Ae. aegypti [52]. Alternatively, another study
observed that Ae. albopictus prefer to live in cooler areas in Florida [39]. However, different
local adaptations by these Aedes species to climatic changes were reported both in and out of
Florida [3,53].To investigate this, we modeled the residuals of maximum temperature to avoid
its collinearity with minimum temperature. This might, however, hinder the interpretation of
the residuals of maximum temperature due to the non-linear association between temperature
and mosquito survival. Further, the same residuals of maximum temperature may impact the
mosquito differently conditional on different minimum temperatures. We performed a sensi-
tivity analysis using mean temperature only, and the associations identified in this study seem
to be unaffected by the choice of temperature (S8 Table). Despite these discussions pertaining
to the relation between mortality of the two Aedes vectors and temperature, seasonality can be
used to predict the patterns of presence and abundance of these two Aedes species and the inci-
dence of diseases transmitted by the these mosquito vectors [15,23,54].

We find a negative correlation between relative humidity and the abundance of Ae. aegypti
and the presence of Ae. albopictus. These findings support laboratory and field observations
showing climate-driven egg mortality, with greater desiccation resistance in Ae. aegypti than
Ae. albopictus, and species-specific responses in occupancy of containers with drier conditions
favoring Ae. aegypti [55-57]. Previous field studies have shown that dry periods are associated
with disproportionately greater mortality of Ae. albopictus eggs than Ae. aegypti eggs in Florida
[57]. Previous laboratory studies revealed desiccation stress on survival of adult Ae. aegypti
and Ae. albopictus with mortality increasing non-linearly with decreasing relative humidity
[58-60]. The complex relationship between adult survival, relative humidity, and the observed
higher relative humidity in Florida could drive the negative association (S3 Fig). In addition,
higher relative humidity was usually associated with greater precipitation, which was found to
be positively correlated with the abundance of Ae. aegypti, but not the probability of occur-
rence of the two species in the sensitivity analysis (S2 Table). The effect of precipitation on the
abundance of these two Aedes species was considered to be mediated by induced egg hatching
in containers upon flooding and promotion of vegetation after raining [23,29]. The larger
effect of precipitation on the abundance of Ae. aegypti than of Ae. albopictus could be due to

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009063 March 25, 2021 13/21


https://doi.org/10.1371/journal.pntd.0009063

PLOS NEGLECTED TROPICAL DISEASES Modelling distributions of Aedes aegyptiand Aedes albopictus

this species’ preference for ovipositing in artificial containers, which are prone to have more
obvious influence from precipitation compared to vegetation.

The probability and efficacy of capturing Ae. aegypti and Ae. albopictus by a BG-sentinel
trap was found to be greater compared to light traps (Table 2), which is consistent with previ-
ous findings [61,62]. We performed sensitivity analysis by fitting the model to data collected
by BG sentinel traps only or light traps only (59 Table). We found the robustness of our main
results are seemingly unaffected by the spatial distribution of BG sentinel traps (58 Fig). In
addition, we were not able to assess the role of attractants due to limited data available, which
are believed to increase the capture efficacy of mosquitoes [63].

Results from the assessment of goodness of fit and cross validation suggested that our
model can provide highly accurate predictions on the presence and abundance of Ae. aegypti
and Ae. albopictus, especially when the model incorporates the previous abundance of hetero-
specific and conspecific Aedes species at a trap. Analysis of long-term mosquito surveillance
data is challenged by the excessive zero counts, which may be real absence, or absence due to
trap failure or adverse environmental conditions. The ZINB regression can model the two sce-
narios of absence simultaneously. A larger rate of inaccurate predictions was observed during
months when trap rates of both mosquito species were higher, which is due to the more dis-
persed variance of a higher trap rate and the exponential growth of mosquito populations. The
relatively higher inconsistent proportion between observed and predicted occurrence in places
with higher trap rates (Fig 2) is caused by the higher chance for false absences in places where
Aedes can be found. In addition, spatial autocorrelation was found for the model of Ae. aegypti,
which was mainly due to the high autocorrelation between observations in Miami-Dade. The
estimates and predictions are however not affected by the spatial autocorrelation, as suggested
by the model fit to the longitudinal training dataset removing data from Miami-Dade (S9 Fig
and S5 Table).

In order to account for the autocorrelations of the repeated measurements from the same
trap and the potential unmeasured confounders that correlated with locations, we incorpo-
rated random effects in the model. However, we found a large proportion of spatial variations
was explained by the random effects at county level. Despite the fact that the results from the
“no abundance model” incorporating fixed effects are only consistent with previous predic-
tions on the two Aedes vectors occurrence and survival probability in Florida [8,64,65], the
maps are less heterogeneously predictive compared to models incorporating random effects.
This is because both 5km x 5km climate and human population density demonstrate relatively
less spatial variation in Florida, while the empirical data suggested great variation in the abun-
dance captured across counties (Figs 1 and S1), which could be partially explained by climate
data at a finer spatial resolution (as suggest by results using Daymet data). The county-level
random effects could be largely mediated by the pre-existing niches of the two Aedes vectors,
which are the result of unmeasured abiotic factors (S3 Table). Such unmeasured abiotic factors
could be the systematic differences in mosquito surveillance across counties or other factors
that are critical for mosquito survival, such as the micro-scale climate conditions, the density
of mosquitoes favoring micro-environment (e.g. water containers and abandoned tires), the
density of hosts other than human, the stochasticity of the establishment of habitat and the
varying efforts of vector spraying across counties. Ideally, the model performance could be
increased after considering these factors, but it is practically challenging to obtain such
information.

Our no abundance model, which used random effect but not the prior abundance informa-
tion, demonstrated good potential to provide real-time predictions on the occurrence and
abundance of Aedes, especially in places with long-term mosquito surveillance. Although the
performance on predictions (especially for occurrence/presence) for the two Aedes vectors
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could be affected by lack of information on local variations when extrapolating to outside
counties, our model can still provide satisfactory predictions. In addition, the performance of
temporal validations could be affected by the out-of-sample predictions as many counties
started mosquito surveillance after 2017 (S1 and S3 Figs). The dynamic changes of niches of
the mosquitoes may further hinder the distribution forecasting of the two vectors. Incorporat-
ing the species invasion process could help to improve modeling at places where rich spatial
information is available.

Many efforts have been made to map the distribution of Ae. aegypti and Ae. albopictus at
broad regional scales, which were highly dependent on vegetation and meteorological factors
[7-9,64,65]. Places like Florida are theoretically suitable for Aedes survival and previous pre-
dictions using coarser scale climate and host density may have reduced utility for local mos-
quito control due to the relatively small spatial variations of such predictors at a fine scale.
Results from this study suggested greater spatial variations that cannot be explained by climate
factors and host population density alone, which calls for more detailed localized data to fur-
ther aid predictions at fine scale. In addition, our study observes suppression of adult popula-
tion of Ae. aegypti by Ae. albopictus, highlighting the importance of including species
interactions in future mapping work as underscored by recent studies, especially when consid-
ering predictions at high spatial resolution [42]. Otherwise, the distribution of Ae. aegypti
would likely be overestimated since the two Aedes vectors shared many common abiotic con-
ditions. In addition, integrating standardized longitudinal mosquito surveillance could pro-
vide valuable information on absence and abundance, therefore reducing the sampling bias
and disproportional weighting caused by presence only data [66]. By creating and making
such a dataset available, it also enables the temporal predictions on presence and abundance,
rather than a single prediction on occurrence.

There are several limitations to our study. First, our data has relatively more trap episodes
during April to November, when the trap rate for these two vectors was often high. The esti-
mated impact of low temperature on the presence and abundance of these two Aedes vectors
may therefore be affected. Second, more than half of the records included in the main analysis
are from Miami-Dade, St. Johns, Polk and Pinellas counties (S10 Table). We have modelled
the random effects across both sites and counties to account for the potential spatial variations
of surveillance, which may improve the generalization capability of our conclusions. We were
not able to characterize specific details of trap locations or other aspects of the built environ-
ment, such as the micro-scale climate and environment. These details could explain more spa-
tial variations in the distribution of the mosquitoes, as suggested by our sensitivity analysis
that used a finer spatial resolution and had smaller site- and county-level variations.

Our models demonstrate potential for predicting the occurrence of Ae. aegypti and Ae.
albopictus, to better inform targeted mosquito control efforts. Model predictions produced
with and without the benefit of recent surveillance data were of high accuracy suggesting that
real-time forecasts could be produced with just climate data alone. Our results, however, call
for the need for additional local data to explain a large spatial variation in mosquito occurrence
and abundance.
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