14,841 research outputs found
Collaboration technology and space science
A summary of available collaboration technologies and their applications to space science is presented as well as investigations into remote coaching paradigms and the role of a specific collaboration tool for distributed task coordination in supporting such teleoperations. The applicability and effectiveness of different communication media and tools in supporting remote coaching are investigated. One investigation concerns a distributed check-list, a computer-based tool that allows a group of people, e.g., onboard crew, ground based investigator, and mission control, to synchronize their actions while providing full flexibility for the flight crew to set the pace and remain on their operational schedule. This autonomy is shown to contribute to morale and productivity
Quantum Corrections to the Reissner-Nordstr\"{o}m and Kerr-Newman Metrics
We use effective field theory techniques to examine the quantum corrections
to the gravitational metrics of charged particles, with and without spin. In
momentum space the masslessness of the photon implies the presence of
nonanalytic pieces etc. in the form factors of
the energy-momentum tensor. We show how the former reproduces the classical
non-linear terms of the Reissner-Nordstr\"{o}m and Kerr-Newman metrics while
the latter can be interpreted as quantum corrections to these metrics, of order
Comment: 16 page latex file with two figure
On the parameterization dependence of the energy momentum tensor and the metric
We use results by Kirilin to show that in general relativity the nonleading
terms in the energy-momentum tensor of a particle depends on the
parameterization of the gravitational field. While the classical metric that is
calculated from this source, used to define the leading long-distance
corrections to the metric, also has a parameteriztion dependence, it can be
removed by a coordinate change. Thus the classical observables are
parameterization independent. The quantum effects that emerge within the same
calculation of the metric also depend on the parameterization and a full
quantum calculation requires the inclusion of further diagrams. However, within
a given parameterization the quantum effects calculated by us in a previous
paper are well defined. Flaws of Kirilin's proposed alternate metric definition
are described and we explain why the diagrams that we calculated are the
appropriate ones.Comment: 8 pages, 2 figure
Composing Scalable Nonlinear Algebraic Solvers
Most efficient linear solvers use composable algorithmic components, with the
most common model being the combination of a Krylov accelerator and one or more
preconditioners. A similar set of concepts may be used for nonlinear algebraic
systems, where nonlinear composition of different nonlinear solvers may
significantly improve the time to solution. We describe the basic concepts of
nonlinear composition and preconditioning and present a number of solvers
applicable to nonlinear partial differential equations. We have developed a
software framework in order to easily explore the possible combinations of
solvers. We show that the performance gains from using composed solvers can be
substantial compared with gains from standard Newton-Krylov methods.Comment: 29 pages, 14 figures, 13 table
Theory of Weak Hypernuclear Decay
The weak nonmesonic decay of Lambda-hypernuclei is studied in the context of
a one-meson-exchange model. Predictions are made for the decay rate, p/n
stimulation ratio and the asymmetry in polarized hypernuclear decay.Comment: Standard 41 page Latex fil
Classical Physics and Quantum Loops
The standard picture of the loop expansion associates a factor of h-bar with
each loop, suggesting that the tree diagrams are to be associated with
classical physics, while loop effects are quantum mechanical in nature. We
discuss examples wherein classical effects arise from loop contributions and
display the relationship between the classical terms and the long range effects
of massless particles.Comment: 15 pages, 3 figure
The FHD/ppsilon Epoch of Reionization Power Spectrum Pipeline
Epoch of Reionization data analysis requires unprecedented levels of accuracy
in radio interferometer pipelines. We have developed an imaging power spectrum
analysis to meet these requirements and generate robust 21 cm EoR measurements.
In this work, we build a signal path framework to mathematically describe each
step in the analysis, from data reduction in the FHD package to power spectrum
generation in the ppsilon package. In particular, we focus on the
distinguishing characteristics of FHD/ppsilon: highly accurate
spectral calibration, extensive data verification products, and end-to-end
error propagation. We present our key data analysis products in detail to
facilitate understanding of the prominent systematics in image-based power
spectrum analyses. As a verification to our analysis, we also highlight a
full-pipeline analysis simulation to demonstrate signal preservation and lack
of signal loss. This careful treatment ensures that the
FHD/ppsilon power spectrum pipeline can reduce radio
interferometric data to produce credible 21 cm EoR measurements.Comment: 21 pages, 10 figures, accepted by PAS
- âŠ