2,445 research outputs found

    Brake assembly bench part set up and part presentation

    Get PDF
    In partnership with Meritor, this project focused on improving the part presentation and downtime losses of the current brake assembly process. The way in which the parts are currently presented to an operator causes an ergonomic strain on the worker, which is not ideal for production, resulting in worker downtime losses and an inefficient build rate. The Rapid Upper Limb Assessment (RULA) was conducted to ensure the ergonomic strain on the worker remains at an acceptable level. As a result of performing two fishbone diagrams on the downtime and ergonomic strain, the team quantified the system losses by the amount of time lost and quantified harmful motions by conducting a RULA assessment. Based on the findings of the Pareto chart and utilizing various Industrial Engineering tools, the team was able to provide solutions to reduce the amount of downtime while also ensuring the motions of workers remain ergonomically safe

    Propulsion biomechanics do not differ between athletic and nonathletic manual wheelchair users in their daily wheelchairs

    Get PDF
    The purpose of this study was to investigate whether athletic and nonathletic manual wheelchair users (MWU) display differences in kinetic and kinematic variables during daily wheelchair propulsion. Thirty-nine manual wheelchair users (athletic n = 25; nonathletic n = 14) propelled their own daily living wheelchair on a roller ergometer at two submaximal speeds for three minutes (1.11 m s−1 and 1.67 m s−1). A 10 camera Vicon motion capture system (Vicon, Motion Systems Ltd. Oxford, United Kingdom) collected three-dimensional kinematics of the upper limbs and thorax at 200 Hz during the final minute of each propulsion trial. Kinetics, kinematics and kinematic variability were compared between athletic and nonathletic groups. Kinematic differences were investigated using statistical parametric mapping. Athletic MWU performed significantly greater physical activity per week compared to nonathletic MWU (920 ± 601 mins vs 380 ± 147 mins, respectively). However, no significant biomechanical differences between athletic and nonathletic MWU were observed during either propulsion speed. During the 1.11 m s−1 trial wheelchair users displayed a stroke frequency of 53 ± 12 pushes/min and a contact angle of 92.5 ± 16.2°. During the 1.67 m s−1 trial the mean stroke frequency was 64 ± 22 pushes/min and contact angle was 85.4 ± 13.6°. Despite the hand being unconstrained during the recovery phase the magnitude of joint kinematic variability was similar across both glenohumeral and scapulothoracic joints during recovery and push phases. To conclude, although athletic MWU participate in more physical activity per week they adopt similar strategies to propel their daily living wheelchair. Investigations of shoulder pain and dailywheelchair propulsion do not need to distinguish between athletic and nonathletic MWU

    The longitudinal relationship between shoulder pain and altered wheelchair propulsion biomechanics of manual wheelchair users

    Get PDF
    The purpose of this study was to investigate the longitudinal association between within-subject changes in shoulder pain and alterations in wheelchair propulsion biomechanics in manual wheelchair users. Eighteen (age 33 ± 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s-1 for three minutes on a dual-roller ergometer during two laboratory visits (T1 and T2) between 4 and 6 months apart. Shoulder pain was assessed using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Between visits mean PC-WUSPI scores increased by 5.4 points and varied from - 13.5 to + 20.9 points. Of the eighteen participants, nine (50%) experienced increased shoulder pain, seven (39%) no change in pain, and two (11%) decreased pain. Increasing shoulder pain severity correlated with increased contact angle (r = 0.59, P = 0.010), thorax range of motion (r = 0.60, P = 0.009) and kinetic and kinematic variability. Additionally, increasing shoulder pain was associated with reductions in peak torque (r = -0.56, P = 0.016), peak glenohumeral abduction (r = -0.69, P = 0.002), peak scapular downward rotation (r = -0.68, P = 0.002), and range of motion in glenohumeral flexion/extension and scapular angles. Group comparisons revealed that these biomechanical alterations were exhibited by individuals who experienced increased shoulder pain, whereas, propulsion biomechanics of those with no change/decreased pain remained unaltered. These findings indicate that wheelchair users exhibit a protective short-term wheelchair propulsion biomechanical response to increases in shoulder pain which may temporarily help maintain functional independence

    Alterations in shoulder kinematics are associated with shoulder pain during wheelchair propulsion sprints

    Get PDF
    The study purpose was to examine the biomechanical characteristics of sports wheelchair propulsion and determine biomechanical associations with shoulder pain in wheelchair athletes. Twenty wheelchair court-sport athletes (age: 32 +/- 11 years old) performed one submaximal propulsion trial in their sports-specific wheelchair at 1.67 m/s for 3 min and two 10 s sprints on a dual-roller ergometer. The Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI) assessed shoulder pain. During the acceleration phase of wheelchair sprinting, participants propelled with significantly longer push times, larger forces, and thorax flexion range of motion (ROM) than both the maximal velocity phase of sprinting and submaximal propulsion. Participants displayed significantly greater peak glenohumeral abduction and scapular internal rotation during the acceleration phase (20 +/- 9 degrees and 45 +/- 7 degrees) and maximal velocity phase (14 +/- 4 degrees and 44 +/- 7 degrees) of sprinting, compared to submaximal propulsion (12 +/- 6 degrees and 39 +/- 8 degrees). Greater shoulder pain severity was associated with larger glenohumeral abduction ROM (r = 0.59, p = 0.007) and scapular internal rotation ROM (r = 0.53, p = 0.017) during the acceleration phase of wheelchair sprinting, but with lower peak glenohumeral flexion (r = -0.49, p = 0.030), peak abduction (r = -0.48, p = 0.034), and abduction ROM (r = -0.44, p = 0.049) during the maximal velocity phase. Biomechanical characteristics of wheelchair sprinting suggest this activity imposes greater mechanical stress than submaximal propulsion. Kinematic associations with shoulder pain during acceleration are in shoulder orientations linked to a reduced subacromial space, potentially increasing tissue stress

    Scapular kinematic variability during wheelchair propulsion is associated with shoulder pain in wheelchair users

    Get PDF
    The purpose of this study was to investigate whether wheelchair propulsion biomechanics differ between individuals with different magnitudes of shoulder pain. Forty (age 36 11 years) manual wheelchair users propelled their own daily living wheelchair at 1.11 m.s(-1) for three minutes on a dual-roller ergometer. Shoulder pain was evaluated using the Performance Corrected Wheelchair User's Shoulder Pain Index (PC-WUSPI). Correlation analyses between spatio-temporal, kinetic and upper limb kinematic variables during wheelchair propulsion and PC-WUSPI scores were assessed. Furthermore, kinematic differences between wheelchair users with no or mild shoulder pain (n = 33) and moderate pain (n = 7) were investigated using statistical parametric mapping. Participant mean PC-WUSPI scores were 20.3 +/- 26.3 points and varied from zero up to 104 points. No significant correlations were observed between kinetic or spatio-temporal parameters of wheelchair propulsion and shoulder pain. However, lower inter-cycle variability of scapular internal/external rotation was associated with greater levels of shoulder pain (r = 0.35, P = 0.03). Wheelchair users with moderate pain displayed significantly lower scapular kinematic variability compared to those with mild or no pain between 17 and 51% of the push phase for internal rotation, between 31-42% and 77-100% of the push phase for downward rotation and between 28-36% and 53-65% of the push phase for posterior tilt. Lower scapular variability displayed by wheelchair users with moderate shoulder pain may reflect a more uniform distribution of repeated subacromial tissue stress imposed by propulsion. This suggests that lower scapular kinematic variability during propulsion may contribute towards the development of chronic shoulder pain. (C) 2020 Elsevier Ltd. All rights reserved

    Quality assessment of an Ultra-Wide Band positioning system for indoor wheelchair court sports

    Get PDF
    Ultra-Wide Band radio positioning systems are maturing very quickly and now represent a good candidate for indoor positioning. The aim of this study was to undertake a quality assessment on the use of a commercial Ultra-Wide Band positioning system for the tracking of athletes during indoor wheelchair court sports. Several aspects have been investigated including system set-up, calibration, sensor positioning, determination of sport performance indicators and quality assessment of the output. With a simple set-up procedure, it has been demonstrated that athletes tracking can be achieved with an average horizontal positioning error of 0.37 m (s = 6 0.24 m). The distance covered can be computed after data processing with an error below 0.5% of the course length. It has also been demonstrated that the tag update rate and the number of wheelchairs on the court do not affect significantly the positioning quality; however, for highly dynamic movement tracking, higher rates are recommended for a finer dynamic recording

    The validity and reliability of a novel indoor player tracking system for use within wheelchair court sports

    Get PDF
    The aim of the current study was to investigate the validity and reliability of a radio frequency-based system for accurately tracking athlete movement within wheelchair court sports. Four wheelchair-specific tests were devised to assess the system during (i) static measurements; (ii) incremental fixed speeds; (iii) peak speeds; and (iv) multidirectional movements. During each test, three sampling frequencies (4, 8 and 16 Hz) were compared to a criterion method for distance, mean and peak speeds. Absolute static error remained between 0.19 and 0.32 m across the session. Distance values (test (ii)) showed greatest relative error in 4 Hz tags (1.3%), with significantly lower errors seen in higher frequency tags (<1.0%). Relative peak speed errors of <2.0% (test (iii)) were revealed across all sampling frequencies in relation to the criterion (4.00 ± 0.09 m · s-(1)). Results showed 8 and 16 Hz sampling frequencies displayed the closest-to-criterion values, whilst intra-tag reliability never exceeded 2.0% coefficient of variation (% CV) during peak speed detection. Minimal relative distance errors (<0.2%) were also seen across sampling frequencies (test (iv)). To conclude, the indoor tracking system is deemed an acceptable tool for tracking wheelchair court match play using a tag frequency of 8 or 16 Hz

    Infarct size and left ventricular remodelling after preventive percutaneous coronary intervention

    Get PDF
    Objective: We hypothesised that, compared with culprit-only primary percutaneous coronary intervention (PCI), additional preventive PCI in selected patients with ST-elevation myocardial infarction with multivessel disease would not be associated with iatrogenic myocardial infarction, and would be associated with reductions in left ventricular (LV) volumes in the longer term. Methods: In the preventive angioplasty in myocardial infarction trial (PRAMI; ISRCTN73028481), cardiac magnetic resonance (CMR) was prespecified in two centres and performed (median, IQR) 3 (1, 5) and 209 (189, 957) days after primary PCI. Results: From 219 enrolled patients in two sites, 84% underwent CMR. 42 (50%) were randomised to culprit-artery-only PCI and 42 (50%) were randomised to preventive PCI. Follow-up CMR scans were available in 72 (86%) patients. There were two (4.8%) cases of procedure-related myocardial infarction in the preventive PCI group. The culprit-artery-only group had a higher proportion of anterior myocardial infarctions (MIs) (55% vs 24%). Infarct sizes (% LV mass) at baseline and follow-up were similar. At follow-up, there was no difference in LV ejection fraction (%, median (IQR), (culprit-artery-only PCI vs preventive PCI) 51.7 (42.9, 60.2) vs 54.4 (49.3, 62.8), p=0.23), LV end-diastolic volume (mL/m2, 69.3 (59.4, 79.9) vs 66.1 (54.7, 73.7), p=0.48) and LV end-systolic volume (mL/m2, 31.8 (24.4, 43.0) vs 30.7 (23.0, 36.3), p=0.20). Non-culprit angiographic lesions had low-risk Syntax scores and 47% had non-complex characteristics. Conclusions: Compared with culprit-only PCI, non-infarct-artery MI in the preventive PCI strategy was uncommon and LV volumes and ejection fraction were similar

    Quality assessment of an UWB positioning system for indoor wheelchair court sports

    Get PDF
    Ultra-Wide Band radio positioning systems are maturing very quickly and now represent a good candidate for indoor positioning. The aim of this study was to undertake a quality assessment on the use of a commercial Ultra-Wide Band positioning system for the tracking of athletes during indoor wheelchair court sports. Several aspects have been investigated including system setup, calibration, sensor positioning, determination of sport performance indicators and quality assessment of the output. With a simple setup procedure, it has been demonstrated that athletes tracking can be achieved with an average horizontal positioning error of 0.37 m (σ = ± 0.24 m). Distance covered can be computed after data processing with an error below 0.5% of the course length. It has also been demonstrated that the tag update rate and the number of wheelchairs on the court does not affect significantly the positioning quality; however, for highly dynamic movement tracking, higher rates are recommended for a finer dynamic recording
    • …
    corecore