36 research outputs found

    Statin therapy inhibits remyelination in the central nervous system

    Get PDF
    Remyelination of lesions in the central nervous system contributes to neural repair following clinical relapses in multiple sclerosis. Remyelination is initiated by recruitment and differentiation of oligodendrocyte progenitor cells (OPCs) into myelinating oligodendrocytes. Simvastatin, a blood-brain barrier-permeable statin in multiple sclerosis clinical trials, has been shown to impact the in vitro processes that have been implicated in remyelination. Animals were fed a cuprizone-supplemented diet for 6 weeks to induce localized demyelination in the corpus callosum; subsequent return to normal diet for 3 weeks stimulated remyelination. Simvastatin was injected intraperitoneally during the period of coincident demyelination and OPC maturation (weeks 4 to 6), throughout the entire period of OPC responses (weeks 4 to 9), or during the remyelination-only phase (weeks 7 to 9). Simvastatin treatment (weeks 4 to 6) caused a decrease in myelin load and both Olig2(strong) and Nkx2.2(strong) OPC numbers. Simvastatin treatment (weeks 4 to 9 and 7 to 9) caused a decrease in myelin load, which was correlated with a reduction in Nkx2.2(strong) OPCs and an increase in Olig2(strong) cells, suggesting that OPCs were maintained in an immature state (Olig2(strong)/Nkx2.2(weak)). NogoA+ oligodendrocyte numbers were decreased during all simvastatin treatment regimens. Our findings suggest that simvastatin inhibits central nervous system remyelination by blocking progenitor differentiation, indicating the need to monitor effects of systemic immunotherapies that can access the central nervous system on brain tissue-repair processes

    FDG-PET imaging for the evaluation of antiglioma agents in a rat model

    No full text
    The increasing development of novel anticancer agents demands parallel advances in the methods used to rapidly assess their therapeutic efficacy (TE) in the preclinical phase. We evaluated the ability of small-animal PET, using the 18F-fluorodeoxy-D-glucose (FDG) radiotracer, to predict the TE of a number of anticancer agents in the rat C6 glioma model following 3 days of treatment. Semi-quantitative measurements of changes in FDG uptake during the course of treatment (standardized uptake value response [SUVr]) were found to be significantly lower in tumors treated with the hypoxia-inducible factor-1α inhibitor YC-1 (15 mg/kg) than in tumors in the control group. No significant SUVr change was observed following a similar 3-day regimen with the proapoptotic agent NS1619 (20 ÎŒg/kg), the combination of YC-1 and NS1619, or the alkylating agent temozolomide (7.5 mg/kg). Quantitative immunohistochemical studies demonstrated significantly lower levels of glucose transporter-1 (GLUT-1) expression in the YC-1 – treated tumors, thereby correlating with the low SUVr observed in this group. The ability of SUVr to predict gold-standard outcomes of TE was further validated as YC-1 – treated tumors had decreased volumes compared to control tumors. As such, we successfully demonstrated the ability of FDG-PET to rapidly determine the TE of novel agents for the treatment of glioma in the preclinical phase of evaluation

    A test-retest study on Parkinson's PPMI dataset yields statistically significant white matter fascicles

    No full text
    In this work, we propose a diffusion MRI protocol for mining Parkinson's disease diffusion MRI datasets and recover robust disease-specific biomarkers. Using advanced high angular resolution diffusion imaging (HARDI) crossing fiber modeling and tractography robust to partial volume effects, we automatically dissected 50 white matter (WM) fascicles. These fascicles connect deep nuclei (thalamus, putamen, pallidum) to different cortical functional areas (associative, motor, sensorimotor, limbic), basal forebrain and substantia nigra. Then, among these 50 candidate WM fascicles, only the ones that passed a test-retest reproducibility procedure qualified for further tractometry analysis. Leveraging the unique 2-timepoints test-retest Parkinson's Progression Markers Initiative (PPMI) dataset of over 600 subjects, we found statistically significant differences in tract profiles along the subcortico-cortical pathways between Parkinson's disease patients and healthy controls. In particular, significant increases in FA, apparent fiber density, tract-density and generalized FA were detected in some locations of the nigro-subthalamo-putaminal-thalamo-cortical pathway. This connection is one of the major motor circuits balancing the coordination of motor output. Detailed and quantifiable knowledge on WM fascicles in these areas is thus essential to improve the quality and outcome of Deep Brain Stimulation, and to target new WM locations for investigation. Keywords: Test-retest, Parkinson, White matter, Diffusion, MRI, Tractography, Tractometr

    Early Manifestations of Brain Aging in Mice Due to Low Dietary Folate and Mild MTHFR Deficiency

    No full text
    Folate is an important B vitamin required for methylation reactions, nucleotide and neurotransmitter synthesis, and maintenance of homocysteine at nontoxic levels. Its metabolism is tightly linked to that of choline, a precursor to acetylcholine and membrane phospholipids. Low folate intake and genetic variants in folate metabolism, such as the methylenetetrahydrofolate reductase (MTHFR) 677 C>T polymorphism, have been suggested to impact brain function and increase the risk for cognitive decline and late-onset Alzheimer’s disease. Our study aimed to assess the impact of genetic and nutritional disturbances in folate metabolism, and their potential interaction, on features of cognitive decline and brain biochemistry in a mouse model. Wild-type and Mthfr+/− mice, a model for the MTHFR 677 C>T polymorphism, were fed control or folate-deficient diets from weaning until 8 and 10 months of age. We observed short-term memory impairment measured by the novel object paradigm, altered transcriptional levels of synaptic markers and epigenetic enzymes, as well as impaired choline metabolism due to the Mthfr+/− genotype in cortex or hippocampus. We also detected changes in mRNA levels of Presenillin-1, neurotrophic factors, one-carbon metabolic and epigenetic enzymes, as well as reduced levels of S-adenosylmethionine and acetylcholine, due to the folate-deficient diet. These findings shed further insights into the mechanisms by which genetic and dietary folate metabolic disturbances increase the risk for cognitive decline and suggest that these mechanisms are distinct.This work was supported by the Canadian Institutes of Health Research (MOP-43232 to RR). RHB is the recipient of a Doctoral Award from the Fonds de Recherche du QuĂ©bec-SantĂ©. MCT is the recipient of a Predoctoral Fellowship from MINECO (FPU 2013) and Post-Doctoral Award from the Fonds de Recherche du QuĂ©bec-SantĂ©. The Research Institute is supported by a Center’s grant from the Fonds de Recherche du QuĂ©bec-SantĂ©

    Positive florbetapir PET amyloid imaging in a subject with frequent cortical neuritic plaques and frontotemporal lobar degeneration with TDP43-positive inclusions

    No full text
    Abnormal neuronal accumulation and modification of TAR DNA binding protein 43 (TDP-43) have recently been discovered to be defining histopathological features of particular subtypes of frontotemporal dementia and amyotrophic lateral sclerosis, and are also common in aging, particularly coexisting with hippocampal sclerosis and Alzheimer\u27s disease pathology. This case report describes a 72 year old Hispanic male with no family history of neurological disease, who presented at age 59 with obsessive behavior, anxiety, agitation, and dysphasia. Positron emission tomography imaging using the amyloid ligand 18F florbetapir (Amyvid) was positive. Postmortem examination revealed frequent diffuse and neuritic amyloid plaques throughout the cerebral cortex, thalamus, and striatum, Braak stage II neurofibrillary degeneration, and frequent frontal and temporal cortex TDP-43-positive neurites with rare nuclear inclusions. The case is unusual and instructive because of the co-existence of frequent cortical and diencephalic amyloid plaques with extensive TDP-43-positive histopathology in the setting of early-onset dementia and because it demonstrates that a positive cortical amyloid imaging signal in a subject with dementia does not necessarily establish that Alzheimer\u27s disease is the sole cause
    corecore