32 research outputs found

    Diabetes does not impact the diagnostic performance of contrast-based fractional flow reserve: insights from the CONTRAST study

    Get PDF
    Background: Adenosine-free coronary pressure wire metrics have been proposed to test the functional significance of coronary artery lesions, but it is unexplored whether their diagnostic performance might be altered in patients with diabetes. Methods: We performed a post-hoc analysis of the CONTRAST study, which prospectively enrolled an international cohort of patients undergoing routine fractional flow reserve (FFR) assessment for standard indications. Paired, repeated measurements of all physiology metrics (Pd/Pa, iFR, contrast-based FFR, and FFR) were made. A central core laboratory analyzed blinded pressure tracings in a standardized fashion. Results: Of 763 subjects enrolled at 12 international centers, 219 (29%) had diabetes. The two groups were wellbalanced for age, clinical presentation (stable or unstable), coronary vessel studied, volume and type of intracoronary contrast, and volume of intracoronary adenosine. A binary threshold of cFFR ≤ 0.83 produced an accuracy superior to both Pd/Pa and iFR when compared with FFR ≤ 0.80 in the absence of significant interaction with diabetes status; indeed, accuracy in subgroups of patients with or without diabetes was similar for cFFR (86.7 vs 85.4% respectively; p = 0.76), iFR (84.2 vs 80.0%, p = 0.29) and Pd/Pa (81.3 vs 78.9%, p = 0.55). There was no significant heterogeneity between patients with or without diabetes in terms of sensitivity and specificity of all metrics. The area under the receiver operating characteristic (ROC) curve was largest for cFFR compared with Pd/Pa and iFR which were equivalent (cFFR 0.961 and 0.928; Pd/Pa 0.916 and 0.870; iFR 0.911 and 0.861 in diabetic and non-diabetic patients respectively). Conclusions: cFFR provides superior diagnostic performance compared with Pd/Pa or iFR for predicting FFR irrespective of diabetes (clinicaltrials.gov identifier NCT02184117)

    Infarct size and left ventricular remodelling after preventive percutaneous coronary intervention

    Get PDF
    Objective: We hypothesised that, compared with culprit-only primary percutaneous coronary intervention (PCI), additional preventive PCI in selected patients with ST-elevation myocardial infarction with multivessel disease would not be associated with iatrogenic myocardial infarction, and would be associated with reductions in left ventricular (LV) volumes in the longer term. Methods: In the preventive angioplasty in myocardial infarction trial (PRAMI; ISRCTN73028481), cardiac magnetic resonance (CMR) was prespecified in two centres and performed (median, IQR) 3 (1, 5) and 209 (189, 957) days after primary PCI. Results: From 219 enrolled patients in two sites, 84% underwent CMR. 42 (50%) were randomised to culprit-artery-only PCI and 42 (50%) were randomised to preventive PCI. Follow-up CMR scans were available in 72 (86%) patients. There were two (4.8%) cases of procedure-related myocardial infarction in the preventive PCI group. The culprit-artery-only group had a higher proportion of anterior myocardial infarctions (MIs) (55% vs 24%). Infarct sizes (% LV mass) at baseline and follow-up were similar. At follow-up, there was no difference in LV ejection fraction (%, median (IQR), (culprit-artery-only PCI vs preventive PCI) 51.7 (42.9, 60.2) vs 54.4 (49.3, 62.8), p=0.23), LV end-diastolic volume (mL/m2, 69.3 (59.4, 79.9) vs 66.1 (54.7, 73.7), p=0.48) and LV end-systolic volume (mL/m2, 31.8 (24.4, 43.0) vs 30.7 (23.0, 36.3), p=0.20). Non-culprit angiographic lesions had low-risk Syntax scores and 47% had non-complex characteristics. Conclusions: Compared with culprit-only PCI, non-infarct-artery MI in the preventive PCI strategy was uncommon and LV volumes and ejection fraction were similar

    Comparison of different diastolic resting indexes to iFR: are they all equal?

    Get PDF
    Background: Pressure measurement for the duration of the wave-free period (WFP) is considered essential for resting-state physiological assessment of coronary stenosis severity using the instantaneous wave-free ratio (iFR). Objectives: The aim of this study was to compare other diastolic resting indexes to iFR. Methods: In the population of the VERIFY2 (Pd/Pa vs iFR in an Unselected Population Referred for Invasive Angiography) study, iFR calculated by proprietary software (Volcano Harvest, Volcano Corporation, Rancho Cordova, California) was compared with the ratio of resting distal coronary pressure and aortic pressure during the complete duration of diastole (dPR), 25% to 75% of diastole (dPR25–75), and midpoint of diastole (dPRmid), along with Matlab calculated iFR (iFRmatlab) and iFR-like indexes shortening the length of the WFP by 50 and 100 ms (iFR−50ms and iFR−100ms), respectively. Mutual differences, Spearman correlations, area under the curve values from receiver-operating characteristic analyses, and diagnostic performance with respect to iFR and fractional flow reserve (FFR) were calculated for all indexes. Results: Median iFR in 197 patients with 257 vessels was 0.91 with an interquartile range of 0.87 to 0.95. The mutual differences (± SD) with iFR were 0.006 ± 0.011 (dPR), 0.001 ± 0.007 (dPR25–75), 0.001 ± 0.008 (dPRmid), 0.005 ± 0.009 (iFRmatlab), 0.003 ± 0.008 (iFR−50ms), and 0.001 ± 0.009 (iFR−100ms). Correlations for all indexes with iFR were >0.99 (p < 0.001 for all). Area under the curve values for predicting iFR were >0.99 for all indexes as well. Diagnostic accuracy compared with FFR was 76% to 77% for all indexes including iFR. Conclusions: All diastolic resting indexes tested were identical to iFR, both numerically and with respect to their agreement with FFR. A numerically equal value to iFR can be determined without restriction to the WFP. Cutoff values, guidelines, and clinical recommendations for iFR can therefore be extended to these other indexes. (Pd/Pa vs iFR in an Unselected Population Referred for Invasive Angiography [VERIFY2]; NCT02377310)

    Continuum of vasodilator stress from rest to contrast medium to adenosine hyperemia for fractional flow reserve assessment

    Get PDF
    Objectives: This study compared the diagnostic performance with adenosine-derived fractional flow reserve (FFR) ≤0.8 of contrast-based FFR (cFFR), resting distal pressure (Pd)/aortic pressure (Pa), and the instantaneous wave-free ratio (iFR). Background: FFR objectively identifies lesions that benefit from medical therapy versus revascularization. However, FFR requires maximal vasodilation, usually achieved with adenosine. Radiographic contrast injection causes submaximal coronary hyperemia. Therefore, intracoronary contrast could provide an easy and inexpensive tool for predicting FFR. Methods: We recruited patients undergoing routine FFR assessment and made paired, repeated measurements of all physiology metrics (Pd/Pa, iFR, cFFR, and FFR). Contrast medium and dose were per local practice, as was the dose of intracoronary adenosine. Operators were encouraged to perform both intracoronary and intravenous adenosine assessments and a final drift check to assess wire calibration. A central core lab analyzed blinded pressure tracings in a standardized fashion. Results: A total of 763 subjects were enrolled from 12 international centers. Contrast volume was 8 ± 2 ml per measurement, and 8 different contrast media were used. Repeated measurements of each metric showed a bias <0.005, but a lower SD (less variability) for cFFR than resting indexes. Although Pd/Pa and iFR demonstrated equivalent performance against FFR ≤0.8 (78.5% vs. 79.9% accuracy; p = 0.78; area under the receiver-operating characteristic curve: 0.875 vs. 0.881; p = 0.35), cFFR improved both metrics (85.8% accuracy and 0.930 area; p < 0.001 for each) with an optimal binary threshold of 0.83. A hybrid decision-making strategy using cFFR required adenosine less often than when based on either Pd/Pa or iFR. Conclusions: cFFR provides diagnostic performance superior to that of Pd/Pa or iFR for predicting FFR. For clinical scenarios or health care systems in which adenosine is contraindicated or prohibitively expensive, cFFR offers a universal technique to simplify invasive coronary physiological assessments. Yet FFR remains the reference standard for diagnostic certainty as even cFFR reached only ∼85% agreement

    Percutaneous coronary intervention versus medical therapy in patients with angina and grey-zone fractional flow reserve values: a randomised clinical trial

    Get PDF
    Introduction: There is conflicting evidence regarding the benefits of percutaneous coronary intervention (PCI) in patients with grey zone fractional flow reserve (GZFFR artery) values (0.75–0.80). The prevalence of ischaemia is unknown. We wished to define the prevalence of ischaemia in GZFFR artery and assess whether PCI is superior to optimal medical therapy (OMT) for angina control. Methods: We enrolled 104 patients with angina with 1:1 randomisation to PCI or OMT. The artery was interrogated with a Doppler flow/pressure wire. Patients underwent Magnetic Resonance Imaging (MRI) with follow-up at 3 and 12 months. The primary outcome was angina status at 3 months using the Seattle Angina Questionnaire (SAQ). Results: 104 patients (age 60±9 years), 79 (76%) males and 79 (76%) Left Anterior Descending (LAD) stenoses were randomised. Coronary physiology and SAQ were similar. Of 98 patients with stress perfusion MRI data, 17 (17%) had abnormal perfusion (≥2 segments with ≥25% ischaemia or ≥1 segment with ≥50% ischaemia) in the target GZFFR artery. Of 89 patients with invasive physiology data, 26 (28%) had coronary flow velocity reserve <2.0 in the target GZFFR artery. After 3 months of follow-up, compared with patients treated with OMT only, patients treated by PCI and OMT had greater improvements in SAQ angina frequency (21 (28) vs 10 (23); p=0.026) and quality of life (24 (26) vs 11 (24); p=0.008) though these differences were no longer significant at 12 months. Conclusions: Non-invasive evidence of major ischaemia is uncommon in patients with GZFFR artery. Compared with OMT alone, patients randomised to undergo PCI reported improved symptoms after 3 months but these differences were no longer significant after 12 months

    Fractional flow reserve: a clinical perspective

    Get PDF
    Fractional flow reserve (FFR) is a reference invasive diagnostic test to assess the physiological significance of an epicardial coronary artery stenosis. FFR-guided percutaneous coronary intervention in stable coronary artery disease has been assessed in three seminal clinical trials and the indications for FFR assessment are expanding into other clinical scenarios. In this article we review the theoretical, experimental and clinical basis for FFR measurement. We place FFR measurement in the context of the comprehensive invasive assessment of coronary physiology in patients presenting with known or suspected angina pectoris in daily clinical practice, and review the recent developments in FFR assessment

    Is hyperaemia essential for accurate functional assessment of coronary stenosis severity?

    No full text
    Fractional flow reserve (FFR) requires the use of maximal hyperaemia as described in the original preclinical and clinical validation studies and subsequent practice changing randomized controlled trials. A perception that the need for hyperaemia (usually induced with adenosine) was one of the obstacles to more widespread adoption of FFR has led to interest in the use of resting non-hyperaemic indices to assess the functional significance of coronary stenoses. We examine the current evidence base and conclude that resting indices agree with FFR in only 80 % of lesions when a binary cut-off is employed but closer to 90 % when hybrid strategies utilising both resting indices and FFR are utilised. It seems counter intuitive to sacrifice diagnostic accuracy when in most patients and healthcare systems the induction of hyperaemia with adenosine is safe and emminently affordable

    Physiological assessment of coronary lesion severity

    No full text
    Coronary angiography alone cannot accurately identify the haemodynamic impact of a coronary artery stenosis. Current international guidelines for myocardial revascularization recommend that inducible ischaemia should be demonstrated before the consideration of percutaneous coronary intervention. Invasive physiological assessment of coronary stenosis severity has increasingly been utilized for this purpose and use of the best validated technique, fractional flow reserve (FFR), has been shown to improve clinical outcomes in patients with stable and unstable coronary artery disease. This has led to the use of FFR being recommended in international revascularization guidelines, despite which, clinical uptake has been limited. One potential reason for slow adoption has been the requirement for maximal hyperaemia at the time of FFR measurement, usually achieved by the administration of pharmacological vasodilators such as adenosine. In some healthcare systems, adenosine is expensive and, in addition, its use can be associated with significant, albeit transient, adverse effects that patients (and some operators) find uncomfortable. Consequently, several methods of nonhyperaemic lesion assessment and their potential role in decision making have been reported. In this review we will review and discuss the current evidence for hyperaemic and nonhyperaemic methods of lesion assessment. We will also look at hybrid strategies that utilize both hyperaemic and nonhyperaemic methods as a means of potentially maintaining diagnostic accuracy while minimizing the requirement for adenosine administration and discuss whether or not they represent viable clinical alternatives
    corecore