35 research outputs found
On fractional realizations of graph degree sequences
We introduce fractional realizations of a graph degree sequence and a closely
associated convex polytope. Simple graph realizations correspond to a subset of
the vertices of this polytope. We describe properties of the polytope vertices
and characterize degree sequences for which each polytope vertex corresponds to
a simple graph realization. These include the degree sequences of pseudo-split
graphs, and we characterize their realizations both in terms of forbidden
subgraphs and graph structure.Comment: 18 pages, 4 figure
On realization graphs of degree sequences
Given the degree sequence of a graph, the realization graph of is the
graph having as its vertices the labeled realizations of , with two vertices
adjacent if one realization may be obtained from the other via an
edge-switching operation. We describe a connection between Cartesian products
in realization graphs and the canonical decomposition of degree sequences
described by R.I. Tyshkevich and others. As applications, we characterize the
degree sequences whose realization graphs are triangle-free graphs or
hypercubes.Comment: 10 pages, 5 figure
Uniqueness and minimal obstructions for tree-depth
A k-ranking of a graph G is a labeling of the vertices of G with values from
{1,...,k} such that any path joining two vertices with the same label contains
a vertex having a higher label. The tree-depth of G is the smallest value of k
for which a k-ranking of G exists. The graph G is k-critical if it has
tree-depth k and every proper minor of G has smaller tree-depth.
We establish partial results in support of two conjectures about the order
and maximum degree of k-critical graphs. As part of these results, we define a
graph G to be 1-unique if for every vertex v in G, there exists an optimal
ranking of G in which v is the unique vertex with label 1. We show that several
classes of k-critical graphs are 1-unique, and we conjecture that the property
holds for all k-critical graphs. Generalizing a previously known construction
for trees, we exhibit an inductive construction that uses 1-unique k-critical
graphs to generate large classes of critical graphs having a given tree-depth.Comment: 14 pages, 4 figure
Upward-closed hereditary families in the dominance order
The majorization relation orders the degree sequences of simple graphs into
posets called dominance orders. As shown by Hammer et al. and Merris, the
degree sequences of threshold and split graphs form upward-closed sets within
the dominance orders they belong to, i.e., any degree sequence majorizing a
split or threshold sequence must itself be split or threshold, respectively.
Motivated by the fact that threshold graphs and split graphs have
characterizations in terms of forbidden induced subgraphs, we define a class
of graphs to be dominance monotone if whenever no realization of
contains an element as an induced subgraph, and majorizes
, then no realization of induces an element of . We present
conditions necessary for a set of graphs to be dominance monotone, and we
identify the dominance monotone sets of order at most 3.Comment: 15 pages, 6 figure
Graphs with the strong Havel-Hakimi property
The Havel-Hakimi algorithm iteratively reduces the degree sequence of a graph
to a list of zeroes. As shown by Favaron, Mah\'eo, and Sacl\'e, the number of
zeroes produced, known as the residue, is a lower bound on the independence
number of the graph. We say that a graph has the strong Havel-Hakimi property
if in each of its induced subgraphs, deleting any vertex of maximum degree
reduces the degree sequence in the same way that the Havel-Hakimi algorithm
does. We characterize graphs having this property (which include all threshold
and matrogenic graphs) in terms of minimal forbidden induced subgraphs. We
further show that for these graphs the residue equals the independence number,
and a natural greedy algorithm always produces a maximum independent set.Comment: 7 pages, 3 figure
The principal Erdős–Gallai differences of a degree sequence
The Erdős–Gallai criteria for recognizing degree sequences of simple graphs involve a system of inequalities. Given a fixed degree sequence, we consider the list of differences of the two sides of these inequalities. These differences have appeared in varying contexts, including characterizations of the split and threshold graphs, and we survey their uses here. Then, enlarging upon properties of these graph families, we show that both the last term and the maximum term of the principal Erdős–Gallai differences of a degree sequence are preserved under graph complementation and are monotonic under the majorization order and Rao\u27s order on degree sequences