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a b s t r a c t

A 2-switch is an edge addition/deletion operation that changes adjacencies in the graph
while preserving the degree of each vertex. A well-known result states that graphs with
the same degree sequence may be changed into each other via sequences of 2-switches.
We show that if a 2-switch changes the isomorphism class of a graph, then it must take
place in one of four configurations. We also present a sufficient condition for a 2-switch to
change the isomorphism class of a graph. As consequences, we give a new characterization
of matrogenic graphs and determine the largest hereditary graph family whose members
are all the unique realizations (up to isomorphism) of their respective degree sequences.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The degree sequence is one of the simplest parameters associated with a graph, and the efficiency of several graph
algorithms depends upon this simplicity. However, the utility of a degree sequence in a graph problem is limited by the fact
that most degree sequences belong to several pairwise nonisomorphic graphs (the realizations of their respective degree
sequences). It is desirable, then, to understand the relationships that exist among graphs with the same degree sequence.

A well-known result of Fulkerson et al. [7] links graphs having the same degree sequence. An alternating 4-cycle is an
instance of four vertices a, b, c, d in a graph G such that ab and cd are edges of G and bc and ad are not; we denote this
alternating 4-cycle by ⟨a, b : c, d⟩. (See Fig. 1.) Suppose G has such an alternating 4-cycle, let H be the graph obtained by
deleting ab and cd from G and adding edges bc and ad. We refer to these operations as a 2-switch (on ⟨a, b : c, d⟩). Note that
a 2-switch leaves the degree of every vertex unchanged, so G and H have the same degree sequence.

Theorem 1.1 ([7]). Two unlabeled graphs G and H have the same degree sequence if and only if there is a sequence of 2-switches
that transforms G into H.

Since a 2-switch changes the adjacencies in a graph, it seems natural that it should often change the isomorphism class
of the graph. However, this is not always the case; for example, the unique 2-switch possible on a four-vertex path creates
another four-vertex path. In Section 2, we study when a 2-switch changes the isomorphism class of a graph. We present a
necessary condition, showing that a 2-switch cannot change the isomorphism class of a graph unless it occurs within one of
four vertex–edge configurations (we give a precise definition of a configuration in the following section). We further show
that this necessary condition is also sufficient unless the 2-switch happens in one of two more configurations, which are
produced by overlaying two of the original four configurations in a ‘‘symbiotic’’ way.

We apply these results in Sections 3 and 4 to special classes of graphs. In Section 3 we discuss the matrogenic graphs.
We give a new proof that matrogenic graphs are unigraphs, that is, unique realizations of their respective degree sequences

E-mail address:michael.barrus@bhsu.edu.

0012-365X/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.disc.2012.04.014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82587375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.disc.2012.04.014
http://www.elsevier.com/locate/disc
http://www.elsevier.com/locate/disc
mailto:michael.barrus@bhsu.edu
http://dx.doi.org/10.1016/j.disc.2012.04.014


2218 M.D. Barrus / Discrete Mathematics 312 (2012) 2217–2222

Fig. 1. An alternating 4-cycle.

up to isomorphism. We also provide a new characterization of matrogenic graphs in terms of their alternating 4-cycles and
automorphisms.

In Section 4 we study hereditary unigraphs. Though the class of unigraphs is not hereditary (closed under taking induced
subgraphs), a number of interesting hereditary graph classes, among them the threshold graphs and matrogenic graphs,
contain only unigraphs. Hereditary classes of unigraphs also appear to have an important role in the study of hereditary
graph classes having degree sequence characterizations (see [1–3]). We characterize all hereditary classes of unigraphs,
including the maximum such class, in terms of their minimal forbidden induced subgraphs.

2. 2-switches and configurations

A configuration is a triple (V , E, F) such that V and E are the vertex and edge sets, respectively, of a graph G, and F is a
subset of the edge set of the complement of G. We call the elements of F ‘‘non-edges’’. The alternating 4-cycle is an example
of a configuration. As in Fig. 1, we represent the configuration visually by drawing the graph Gwith solid edges and joining
the vertex pairs in F with dotted segments.

A graphH contains the configuration (V , E, F) on vertex setW if there exists a bijection f : V → W such that vertex pairs
in V belonging to E are mapped to adjacent vertices in H , and vertex pairs in V belonging to F are mapped to nonadjacent
vertices in H .

Let V (G) and E(G) denote the vertex set and edge set, respectively, of G. A module M in G is a subset of V (G) with the
property that every vertex in V (G) \ M is adjacent to either all or none of the vertices inM .

Lemma 2.1. Let ⟨a, b : c, d⟩ be an alternating 4-cycle in a graph G, and let H be the graph obtained from G by performing the
2-switch on ⟨a, b : c, d⟩. If {a, c} is a module in G − {b, d}, or if {b, d} is a module in G − {a, c}, then G ∼= H.

Proof. For u, v ∈ V (G), let ϕuv denote the function on V (G) that maps u and v to each other and fixes every other element of
V (G). We claim that if {a, c} is a module in G−{b, d}, then ϕac : V (G) → V (H) is an isomorphism. Indeed, both the 2-switch
and ϕac leave unchanged the relationships (adjacency or nonadjacency) between pairs of vertices that contain neither a
nor c. Let u be any vertex of G not in {a, c}. By the definition of the 2-switch on ⟨a, b : c, d⟩, and since {a, c} is a module in
G − {b, d}, we know that ua ∈ E(G) if and only if uc ∈ E(H), if and only if ϕac(u)ϕac(a) ∈ E(H). Similarly, uc ∈ E(G) if and
only if ϕac(u)ϕac(c) ∈ E(H). Finally, the pair {a, c} is mapped to itself by ϕac and unchanged by the 2-switch.

Similarly, if {b, d} is a module in G − {a, c}, then ϕbd : V (G) → V (H) is an isomorphism. �

Theorem 2.2. If a graph G admits a 2-switch that changes the isomorphism class of the graph, then G contains one of the
configurations in Fig. 2, with vertices p, q, r, s as marked, such that the 2-switch is on ⟨p, q : r, s⟩.

Proof. Suppose that the isomorphism class-changing 2-switch is on ⟨a, b : c, d⟩. By Lemma 2.1, there must be vertices u, v
(with possibly u = v) outside of {a, b, c, d} such that u is adjacent to exactly one of a and c , and v is adjacent to exactly one
of b or d. Depending onwhether u = v and to which of {a, c} and {b, d}, respectively, u and v are adjacent to, Gmust contain
one of the four configurations on the vertex set {a, b, c, d, u, v} (with {p, q, r, s} = {a, b, c, d}). �

We observe that in performing the 2-switch on ⟨p, q : r, s⟩, the configuration in (a) yields a configuration identical (save
for the vertex labels) to that in (b), and the 2-switch on ⟨p, q : r, s⟩ in the configuration in (b) produces a configuration
matching that in (a). The configurations in (c) and (d) also yield unlabeled copies of each other after a 2-switch. Furthermore,
replacing edges with non-edges and vice versa in each configuration above, we see that G contains the configuration in (a)
or (c) if and only if G contains the configuration in (b) or (d), respectively.

An example shows that the converse of Theorem 2.2 is not true. Let U be the graph shown in Fig. 3; up to isomorphism,
this is the unique graph having degree sequence (4, 2, 2, 2, 2, 2). The graph contains the configuration in Fig. 2(a) on vertex
set {v, w, x, y, z}, but since it is a unigraph, the 2-switch on ⟨v, w : z, x⟩ does not change the isomorphism class. From
the paragraph above, we conclude that U must also contain the configuration in Fig. 2(b), which it does, on vertex set
{u, v, w, x, z}.

As mentioned above, the 2-switch on ⟨p, q, r, s⟩ changes a copy of the configuration in Fig. 2(a) into a copy of the
configuration in (b). (Observe that no 5-vertex subgraph can simultaneously contain both configurations.) If the 2-switch
does not change the isomorphism class of the graph G containing the configuration, then the number of copies in G of
each configuration must remain the same after the 2-switch; hence the 2-switch must also destroy some copy in G of the
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Fig. 2. Configurations for isomorphism class-changing 2-switches.

Fig. 3. The unigraph U .

a b

Fig. 4. The configurations from Theorem 2.3.

configuration in (b) and create a copy of the configuration in (a). Similar remarks hold for the configurations in Fig. 2(c)
and (d).

Intuitively, it seems that the simplest way to preserve the number of copies inG of the configurations in (a) and (b) during
a 2-switch is to ‘‘overlay’’ the configurations, identifying the copies of p, q, r , and swhile keeping the central vertices distinct.
In this way, the 2-switch will simultaneously create a copy of one of these configurations on one set of five vertices at the
same time it eliminates a copy of the same configuration on another set of five vertices; the two overlaid configurations
have a ‘‘symbiotic’’ relationship, working together to keep their numbers equal before and after the 2-switch. We show that
in fact this phenomenon, or an analogous version involving the configurations in (c) and (d),must happen when a 2-switch
fails to change an isomorphism class.

Theorem 2.3. If a graph G contains one of the configurations shown in Fig. 2, and the 2-switch on ⟨p, q : r, s⟩ produces a graph
isomorphic to G, then the vertices of the configuration lie in one of the configurations in Fig. 4, where the alternating cycle
⟨u, v : w, x⟩ coincides with ⟨p, q : r, s⟩.

Proof. Suppose first that G contains a configuration from Fig. 2(a) or (b), with vertices p, q, r, s as labeled there, and the
2-switch on ⟨p, q : r, s⟩ produces a graph isomorphic to G. Let A denote the set of all vertices in G whose neighborhoods
have intersection with {p, q, r, s} equal to {p, q} or {r, s}; let B denote the set of all vertices whose neighborhoods have
intersection either {q, r} or {p, s}. Let C and D denote the sets of all vertices whose neighborhoods intersect {p, q, r, s} in
exactly three and four vertices, respectively. Since the graph resulting from the 2-switch is isomorphic toG, the total number
of triangles destroyed by the edge deletions in the 2-switchmust equal the number of triangles created by the edge additions
in the 2-switch. The former quantity equals |A| + |C | + 2|D|, while the latter equals |B| + |C | + 2|D|, so we conclude that
|A| = |B|. It is clear from the configuration that A or B is nonempty, so in fact both are nonempty, and the five vertices of
the configuration belong to the configuration shown in Fig. 4(a), with ⟨p, q : r, s⟩ equaling ⟨u, v : w, x⟩ (we avoid equating
vertices between the two alternating 4-cycles to allow for symmetries).

Suppose instead that G contains the configuration from Fig. 2(c), with the vertices as labeled in the figure, and vertices y
and z the vertices shown to be adjacent to q and p, respectively. If G contains a seventh vertex t that is adjacent to r but not
to p, or to s but not to q, then these vertices lie in the configuration shown in Fig. 4(b) with ⟨p, q : r, s⟩ equaling ⟨u, v : w, x⟩,
so let us suppose henceforth that any vertex outside {p, q, r, s, y, z} adjacent to r (respectively, s) must be adjacent to p
(to q).

If r and p have the same degree in G, then y is adjacent to r but not p, and any vertex outside {p, q, r, s, y, z} adjacent to
p is also adjacent to r . The induced subgraph with vertex set {p, q, r, s, y} contains the configuration from Fig. 2(a), so by
the argument above, G contains the configuration in Fig. 4(a) with vertex set {p, q, r, s, y, t} for some t . Note that t must be
adjacent to exactly one of r and p; we conclude that t = z. Hence if the degrees of p and r are equal, then the theorem holds.
A similar argument with q, s, z replacing p, r, s shows that the theorem also holds if the degrees of q and s in G are equal.
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Fig. 5. The forbidden configuration for matrogenic graphs.

Suppose instead that dG(p) > dG(r) and dG(q) > dG(s). We define the neighborhood list of a vertex a in G to be the
multiset {dG(b) : b is adjacent to a} for a ∈ V (G), and we denote this by LG(a). The neighborhood list of G will be the
multiset of neighborhood lists of all its vertices. It is clear that the neighborhood list is a graph invariant. Furthermore,
the only vertices whose neighborhood lists can possibly change during a 2-switch are the four vertices of the alternating
4-cycle involved. Now let G′ denote the graph obtained from G via the 2-switch on ⟨p, q : r, s⟩. Since G′ is isomorphic to
G, the two graphs have the same neighborhood list, and since LG(a) = LG′(a) for all a ∈ V (G) \ {p, q, r, s}, we have
{LG(p), LG(q), LG(r), LG(s)} = {LG′(p), LG′(q), LG′(r), LG′(s)}. The multisets LG(p) and LG′(p) have the same size (the degree
of p) and differ in exactly one element; in LG′(p) the term dG(q) in LG(p) is replaced by dG(s), which is smaller. Similar
arguments show that neighborhood lists of q, r , and s are also changed by the 2-switch. Now let a be a vertex in {p, q, r, s}
having a largest neighborhood list inG; we have a ∈ {p, q}. Since a has also a largest neighborhood list inG′, we conclude that
dG(p) = dG(q). Comparing lengths of neighborhood lists, we are forced to conclude that LG′(p) = LG(q) and LG′(q) = LG(p).
As noted above, LG′(p) can be obtained from LG(p), and hence from LG′(q), by replacing the term dG(q) by the smaller number
dG(s). However, a similar argument shows that LG′(q) can be obtained by replacing a term of LG′(p) by a smaller number;
together these statements form a contradiction. Thus the theorem holds if G contains the configuration from Fig. 2(c).

Finally, if G contains the configuration from Fig. 2(d), with the vertices as labeled in the figure, then the complement
G contains the configuration in Fig. 2(c), albeit with the vertex labels in different places. If G′ denotes the graph resulting
from the 2-switch on ⟨p, q : r, s⟩ in G, then G′ is precisely the graph obtained from G via the 2-switch on ⟨q, r : s, p⟩. By the
arguments above, the six vertices of the configuration lie, in G, in one of the configurations shown in Fig. 4, with ⟨q, r : s, p⟩
corresponding to ⟨u, v : w, x⟩. The complement of this latter configuration yields the same configuration with the same
vertex set in G, with the alternating 4-cycle ⟨u, v : w, x⟩ in G′ corresponding to an alternating 4-cycle on the same vertices
in G. Thus, the theorem holds in this last case as well. �

Corollary 2.4. The converse of Theorem 2.2 is true for graphs that contain neither of the configurations shown in Fig. 4.

3. Matrogenic graphs

Matrogenic graphs are those graphs Gwhere the vertex sets of the alternating 4-cycles of G form the circuits of a matroid
on V (G). These graphs were introduced in [6] and shown to be the graphs that forbid the configuration in Fig. 5. Since each
of the configurations in Fig. 2 contains this configuration (on the four outer vertices and one interior vertex), Theorem 2.2
yields another proof of the following:

Corollary 3.1 ([10,11]). Matrogenic graphs are unigraphs.

Furthermore, the results in Section 2 allow us to give new characterizations of matrogenic graphs. As in the proof of
Lemma 2.1, given a set T and elements u and v of the set, let ϕuv denote the bijection from T to itself that maps u and v to
each other and fixes all other elements of T .

Lemma 3.2. A graph G is matrogenic if and only if the following holds: If ⟨a, b : c, d⟩ is any alternating 4-cycle in G, and H is the
graph obtained from G by performing the 2-switch on ⟨a, b : c, d⟩, then ϕac and ϕbd are both isomorphisms from V (G) to V (H).

Proof. Suppose G is matrogenic. Since G forbids the configuration in Fig. 5, the sets {a, c} and {b, d} aremodules in G−{b, d}
and G − {a, c}, respectively, so as in the proof of Lemma 2.1 both ϕac and ϕbd are isomorphisms.

Conversely, ifG is notmatrogenic, then it contains the configuration in Fig. 5, and hence an alternating 4-cycle ⟨a, b : c, d⟩
and a vertex u other than b that is adjacent to a but not to c . Let H be the graph resulting from the 2-switch on ⟨a, b : c, d⟩.
The map ϕac : V (G) → V (H) is not an isomorphism, since ua ∈ E(G), but ϕac(u)ϕac(a) = uc ∉ E(H). �

Theorem 3.3. A graph is matrogenic if and only if for each alternating 4-cycle ⟨a, b : c, d⟩ in G, the map from V (G) to itself that
transposes a and c, transposes b and d, and fixes every other vertex is a graph automorphism.

Proof. Let ρ : V (G) → V (G) denote the map described. Note that ρ = ϕ−1
bd ϕac . If G is matrogenic and ⟨a, b : c, d⟩ and H are

as in Lemma 3.2, then both ϕac and ϕbd are isomorphisms, so ρ is an automorphism. If G is not matrogenic, then as in the
proof of Lemma 3.2, there exists an alternating 4-cycle ⟨a, b : c, d⟩ and a vertex u not in {b, d} such that ua is an edge in G
and uc is not. Since ρ(u)ρ(a) = uc , the map ρ is not an automorphism. �



M.D. Barrus / Discrete Mathematics 312 (2012) 2217–2222 2221

Fig. 6. The graphs R, R, S, and S.

4. Hereditary classes of unigraphs

As mentioned in the introduction, a graph class is hereditary if it is closed under taking induced subgraphs. Naively,
one might assume that the class of unigraphs is hereditary, since if some induced subgraph S of a graph G were not a
unigraph, then performing a 2-switch on S to change the isomorphism class of that subgraph would seem likely to change
the isomorphism class of G as well. However, the graph U in Fig. 3 is an example of a unigraph containing non-unigraphs as
induced subgraphs; U induces two nonisomorphic subgraphs having degree sequence (3, 2, 2, 2, 1).

Still, there are several familiar hereditary classes that contain only unigraphs. The matrogenic graphs discussed in
Section 3 are an example. The class of threshold graphs is another. Though they have several equivalent definitions, threshold
graphs were shown in [5] (see also [8]) to be precisely the class of graphs containing no alternating 4-cycle. Because every
2-switch is performed on an alternating 4-cycle, it follows from Theorem 1.1 that threshold graphs are unigraphs. (For a
survey of results on both threshold and matrogenic graphs, see [9].)

Given a setF of graphs, we say a graphG isF -free if no induced subgraph ofG is isomorphic to an element ofF . For every
hereditary graph class H there is a set F of graphs such that H is precisely the class of F -free graphs. We call elements of
F forbidden subgraphs for H .

Forbidding a configuration such as the one in Fig. 1 or Fig. 5 from a graph is equivalent to forbidding a set of induced
subgraphs. If a configuration C has k vertices, let R(C) denote all k-vertex graphs containing the configuration C. We call
the elements of R(C) the realizations of C. Clearly a graph is R(C)-free if and only if it does not contain the configuration
C. For example, threshold graphs are the {2K2, C4, P4}-free graphs; these forbidden subgraphs are the realizations of the
alternating 4-cycle. The forbidden configuration formatrogenic graphs has ten corresponding forbidden induced subgraphs.

In a recent paper [2], the author and others defined the set F of forbidden induced subgraphs to be degree-sequence-
forcing (DSF) if the membership of a graph G in the class H can be determined knowing only the degree sequence of G.
Thus {2K2, C4, P4} and the set of forbidden subgraphs for the matrogenic graphs are both DSF sets. Among the few sufficient
conditions known for a set to be DSF is the following:

Theorem 4.1 ([2]). If the F -free graphs are all unigraphs, then F is a DSF set.

Such ‘‘unigraph-producing’’ sets F are not the only DSF sets, but empirical evidence suggests [1–3] that they account for a
large portion of the DSF sets containing small graphs.

We call a graph a hereditary unigraph if every one of its induced subgraph is a unigraph. Since the union of a collection
of hereditary graph classes is again a hereditary class of graphs, there is a maximum hereditary class of unigraphs, the set
of all hereditary unigraphs. Using the results of Section 2, we now characterize this class, which will properly contain the
matrogenic graphs and threshold graphs. As a corollary, we derive a characterization of all sets satisfying the hypothesis of
Theorem 4.1.

The house graph is the complement of P5. The 4-pan is the graph obtained by attaching a pendant vertex to one vertex of
a 4-cycle; the complement of the 4-pan is called the co-4-pan. Let R and S be as shown in Fig. 6. Henceforth let

F = {P5, house, K2 + K3, K2,3, 4-pan, co-4-pan, 2P3, (K2 + K1) ∨ (K2 + K1), K2

+ P4, 2K1 ∨ P4, K2 + C4, 2K1 ∨ 2K2, R, R, S, S},

where + and ∨ indicate disjoint union and join, respectively.

Theorem 4.2. The following are equivalent for a graph G:

(i) G is a hereditary unigraph;
(ii) G contains none of the configurations in Fig. 2;
(iii) G is F -free.

Proof. (i) ⇐⇒ (ii): By inspection, we see that none of the realizations of any of the configurations in Fig. 2 is a unigraph;
hence hereditary unigraphs cannot contain any of these configurations. If G is not a hereditary unigraph, then for some
induced subgraph J of G there is a 2-switch possible that changes the isomorphism class of the subgraph induced on V (J).
By Theorem 2.2, J (and hence G) must contain a configuration from Fig. 2.

(ii)H⇒ (iii): The graphs P5, K2,3, and the 4-pan are all realizations of the configuration in Fig. 2(a), and their complements
are all realizations of Fig. 2(b). Each of K2 + P4, K2 + C4, (K2 +K1)∨ (K2 +K1), R, and S is a realization of the configuration in
Fig. 2(c), and their complements are realizations of the configuration in Fig. 2(d). Thus ifG contains none of the configurations
in Fig. 2, then G is F -free.
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(iii)H⇒ (ii): Let G be an arbitraryF -free graph. Since {P5, K2,3, 4−pan} and {house, K2+K3, co−4−pan} are the sets of
realizations of the configurations in Fig. 2(a) and (b), respectively, G contains neither of these configurations. Suppose that
G contains the configuration shown in (c), and let p, q, r, s be vertices of G as labeled in the figure, with t and u denoting the
other configuration vertices adjacent to p and to q, respectively. Since G is {K2 +K3, K2 + P4, K2 +C4}-free, either r or smust
have a neighbor in {p, q, t, u}; by symmetry, we assume that r is adjacent to either p or u.

If r is adjacent to u, then to avoid a copy of P5, the 4-pan, or K2,3 with vertex set {p, q, r, s, u}, we must have p adjacent to
u. To avoid a copy of the house or co-4-pan with vertex set {p, q, r, s, u}, we must have r adjacent to p as well. Since p and
u have exactly the same neighbors and nonneighbors among {q, s} in the original configuration, the same argument, with
p and u exchanging places, shows that if r is adjacent to p then it is adjacent to u. We therefore conclude that {p, r, u} is a
triangle in G.

Consider the vertex set {p, q, r, s, t}. If qt is not an edge, then in order to avoid a copy of the 4-pan or K2,3 on this vertex
set, neither st nor qs is an edge. However, then the subgraph of G induced on {p, q, r, s, t, u} is isomorphic to either R or
S, depending on whether tu is an edge, a contradiction. Thus qt is an edge. To avoid a copy of the co-4-pan or the house
graph with vertex set {p, q, r, s, t}, vertex s must be adjacent to both q and t . To avoid a copy of the house graph with
vertex set {q, r, s, t, u}, we must have t adjacent to u, but then the subgraph of G induced on {p, q, r, s, t, u} is isomorphic
to (K2 + K1) ∨ (K2 + K1), a contradiction.

Thus G cannot contain the configuration in Fig. 2(c). Since F is a self-complementary class of graphs and we observe
that any graph is a unigraph if and only if its complement is, G cannot contain this configuration, either. Ignoring the vertex
labels in Fig. 2, we see that if Gwere to contain the configuration in (d), then Gwould contain the configuration in (c). Thus
G contains none of the configurations in Fig. 2. �

Corollary 4.3. Let G be a set of graphs. The G-free graphs are all unigraphs if and only if every element of F induces an element
of G.

Proof. Since none of the elements of F is a unigraph, if some element F of F induces no element of G, then F is G-free and
hence the G-free graphs are not all unigraphs. If every element of F induces an element of G, then the G-free graphs are all
F -free and by Theorem 4.2 are unigraphs. �

We have characterized the hereditary unigraphs and the DSF sets forbidden for subclasses of these graphs. In conclusion
we mention that Tyshkevich gave a structural characterization of general unigraphs in [12]. Borri et al. [4] expanded upon
this characterization to provide a linear time algorithm that recognizes degree sequences of general unigraphs. Though
beyond the aims of this paper, using Tyskevich’s results and the forbidden subgraph characterization in Theorem 4.2, it is
possible to provide a structural characterization (and from thence a degree sequence characterization, similar in approach
to the one in [4]) for the hereditary unigraphs.
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