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Uniqueness and minimal obstructions for tree-depth

Michael D. Barrus∗ and John Sinkovic†

August 28, 2015

Abstract

A k-ranking of a graph G is a labeling of the vertices of G with values from

{1, . . . , k} such that any path joining two vertices with the same label contains

a vertex having a higher label. The tree-depth of G is the smallest value of k

for which a k-ranking of G exists. The graph G is k-critical if it has tree-depth

k and every proper minor of G has smaller tree-depth.

We establish partial results in support of two conjectures about the order

and maximum degree of k-critical graphs. As part of these results, we de�ne

a graph G to be 1-unique if for every vertex v in G, there exists an optimal

ranking of G in which v is the unique vertex with label 1. We show that several

classes of k-critical graphs are 1-unique, and we conjecture that the property

holds for all k-critical graphs. Generalizing a previously known construction for

trees, we exhibit an inductive construction that uses 1-unique k-critical graphs

to generate large classes of critical graphs having a given tree-depth.

Keywords: Graph minors, tree-depth, vertex ranking

1 Introduction

The tree-depth of a graph G, denoted td(G), is de�ned as the smallest natural number

k such that the vertices of G may be labeled with elements of {1, . . . , k} such that

every path joining two vertices with the same label contains a vertex having a larger

label. The name of this parameter refers to its equivalence with the minimum height of

a rooted forest F with the same vertex set of G for which each edge of G either belongs

to F or joins vertices having an ancestor�descendant relationship in F [1, De�nition

6.1]. Tree-depth has also been referred to as the ordered chromatic number [2, 3]
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or vertex ranking number [4, 5, 6]. (See [1, 7, 8] and the references cited above for

further results and references.)

While much is known about the computational complexity of determining the

tree-depth of a graph [1, 9], from a structural standpoint we wish to understand what

�causes� a given graph to have a particular tree-depth. In particular, since td(G)

is de�ned as a minimum, what obstructions prevent G from having a smaller tree-

depth? One answer lies in the minors ofG; as noted in [1, Lemma 6.2], td(G) ≥ td(H)

whenever H is a minor of G. De�ne a graph M to be critical if every proper minor

of M has tree-depth less than td(M). If td(G) = k for a particular k, then we may

attribute this to the fact that G contains a critical minor with tree-depth k, and G

contains no critical minor with tree-depth k + 1.

(Note that in other places in the literature, �critical� has sometimes been used to

describe graphs for which every proper subgraph has a smaller tree-depth; here we re-

fer to these graphs as subgraph-critical. If a graph has the property that every proper

induced subgraph has a smaller tree-depth, then the graph will be called induced-

subgraph-critical. Since the minor relation encompasses more than the subgraph rela-

tion, it will be more natural here to refer to minors when using the unquali�ed term

�critical.�)

Curiosity about the critical graphs has begun to generate both structural results

and questions. Notably, in [10] (see also [11]), Dvo�rák, Giannopoulou, and Thilikos

de�ned Gk to be the class of graphs having tree-depth at most k, and obs≤(Gk) to
be the set of minimal graphs under the minor-containment order having tree-depth

greater than k (in our terminology, obs≤(Gk) consists of all critical graphs with tree-

depth k+1). Among other things, the paper [10] presented the elements of obs≤(Gk)
for k ∈ {1, 2, 3} (see Figure 1). The authors also gave a constructive result.

Theorem 1.1 ([10]). Given vertex disjoint graphs G and H in obs≤(Gk), if a graph

J is formed by adding to the disjoint union G+H an edge having one endpoint in G

and the other in H, then J belongs to obs≤(Gk+1).

It is easy to see that the sizes of the classes obs≤(Gk) mushroom as k increases;

the paper [10] uses Theorem 1.1 to give a lower bound on the size of obs≤(G4) by
determining the number of trees in this set.

Closer examination of Figure 1 suggests structural properties that may possibly

hold for all critical graphs. In this paper we address two particular conjectures along

these lines. The �rst, which appears in [10], deals with the orders of critical graphs;

in its original form the conjecture is extended to all induced-subgraph-critical graphs.

Conjecture 1.2. Every critical graph with tree-depth k has at most 2k−1 vertices.

The second conjecture, which does not seem to have appeared yet in the literature,

concerns vertex degrees.
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Figure 1: k-critical graphs for k ∈ {1, 2, 3, 4}
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Figure 2: Rankings of P8 demonstrating 1-uniqueness.

Conjecture 1.3. Every critical graph with tree-depth k has maximum degree at most

k − 1.

Conjecture 1.3 is easily proved for a notable class of critical graphs, and this class

will be the focus of this paper. As we will see, the class may in fact include all critical

graphs. We begin with some de�nitions.

Given a graph G, we will call a labeling of the vertices of G with labels from

{1, . . . , k} a feasible labeling if every path in G between two vertices with the same

label (`, say) passes through a vertex with a label greater than `. Adopting termi-

nology from previous authors, we call a feasible labeling with labels from {1, . . . , k}
a (k-)ranking of G, and we refer to the labels as ranks or colors (note that every

feasible labeling is a proper coloring of G). We call a ranking of G optimal if it is a

td(G)-ranking. A critical graph with tree-depth k will be called k-critical.

De�nition 1.1. A graph G is 1-unique if for every vertex v of G there is an optimal

ranking of G in which vertex v is the only vertex receiving rank 1.

For example, the graph P8 is 1-unique, as the rankings in Figure 2 and their

re�ections about the center of the path show.
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For 1-unique graphs, Conjecture 1.3 is true. Indeed, note that in any feasible

ranking of an arbitrary graph G, the neighbors of a vertex receiving rank 1 must all

receive distinct ranks greater than 1; otherwise, some path joining vertices with the

same rank would not contain an intermediate vertex with higher rank. This implies

that in an optimal ranking any vertex with rank 1 has degree at most td(G)− 1. It

immediately follows that 1-unique graphs have maximum degree at most 1 less than

their tree-depths.

In addition to its usefulness in our partial result towards Conjecture 1.3, the

property of 1-uniqueness is interesting as a natural strengthening of a property shared

by all critical graphs. In any critical graph, for each vertex v there is an optimal

ranking of the graph in which v receives the highest rank (and hence is the only

vertex to do so, since critical graphs must be connected). In 1-unique graphs, each

vertex is the only vertex to receive the lowest rank in some optimal ranking. The

relationship between these properties is further explored in Section 2.

Finally, it is uncertain whether there are critical graphs that are not 1-unique. All

the critical graphs with tree-depth at most 4 (see Figure 1) are 1-unique, as are all

members of in�nite families of critical graphs we will encounter later. We conjecture

that the property holds more generally.

Conjecture 1.4. All critical graphs are 1-unique.

In this paper we study 1-uniqueness and give partial results towards Conjec-

tures 1.2 and 1.4 (and hence Conjecture 1.3 as well). In Section 2 we introduce the

more general notion of t-uniqueness of a graph and show that the t-unique graphs for

di�erent values of t form nested families, with 1-unique graphs forming the smallest

such class. In Section 3 we establish partial results towards Conjecture 1.4, show-

ing that the 1-unique graphs with tree-depth k satisfy many of the same minimality

properties that k-critical graphs do. In Section 4 we generalize the construction in

Theorem 1.1. There we show that all graphs inductively constructed in this new way,

beginning with graphs from families including all critical graphs described in [10], are

both critical and 1-unique; thus in particular all critical trees are 1-unique. We show

that the graphs constructed all satisfy Conjecture 1.2 as well.

Before beginning, we de�ne some terms and notation. Given a graph G, let V (G)

and E(G) denote its vertex set and edge set, respectively. The order of G is given

by |V (G)|. Given a vertex v of G, let NG(v) denote the neighborhood of v in G, and

let G − v denote the graph resulting from the deletion of v. Similarly, given a set

S ⊆ V (G), let G− S denote the graph obtained by deleting all vertices in S from G.

For e ∈ E(G), let G − e denote the graph obtained by deleting edge e from G. We

indicate the disjoint union of graphs G and H by G +H, and we indicate a disjoint

union of k copies of G by kG. We use 〈p1, . . . , pk〉 to denote a path from p1 to pk,

with vertices listed in the order the path visits them; the length of such a path is

k−1, the number of its edges. We use Kn, Pn, and Cn to denote the complete graph,
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path, and cycle with n vertices, respectively.

2 t-Unique Graphs

As in [10], let Gk be the class of all graphs with tree-depth at most k. We write

G ≤ H to indicate that G is a minor of H, and we use ⊆ and v, respectively, to
denote the subgraph and induced subgraph relations. For each R ∈ {v,⊆,≤}, let
obsR(Gk) denote the set of graphs not in Gk that are minimal with respect to R.

Note that obs≤(Gk) ⊆ obs⊆(Gk) ⊆ obsv(Gk), and that the elements of obs≤(Gk),
obs⊆(Gk), and obsv(Gk), respectively, are precisely the critical, subgraph-critical,

and induced-subgraph-critical graphs with tree-depth k + 1.

We now generalize the de�nition of 1-uniqueness from the last section. Recall from

[10] the following observation:

Observation 2.1. If G ∈ obsv(Gk) (or obs⊆(Gk) or obs≤(Gk)) then for every v ∈
V (G) there exists a (k + 1)-ranking ρ such that ρ(v) = k + 1.

In a connected graph, only one vertex receives the highest label in an optimal

ranking. For some optimal rankings (as in Figure 2) other values may appear on just

one vertex.

De�nition 2.1. A vertex v of G is t-unique if there exists an optimal ranking of

G where v is the unique vertex with rank t. The graph G is t-unique if each of its

vertices is t-unique.

The notion of a t-unique graph resembles that of a centered coloring. As explained

in [8], a centered coloring of a graph G is a vertex coloring with the property that in

every connected subgraph of G some color appears exactly once. The minimum num-

ber of colors necessary for a centered coloring is then td(G), and an optimal ranking

of G is a centered coloring. Similarly, t-uniqueness deals with a color appearing once,

though by our de�nition this color is the �xed color t, and the only subgraph of G

considered is G itself. Furthermore, t-uniqueness is a property of a vertex or graph,

rather than of a single coloring; for a graph G, t-uniqueness requires that multiple

optimal colorings exist, placing the color t at each vertex of G in turn.

We now study t-uniqueness and how it relates to the classes obsR(Gk) for R ∈ {v
,⊆,≤}.

Lemma 2.2. Let td(G) = k + 1. Then G ∈ obsv(Gk) if and only if G is (k + 1)-

unique.

Proof. If G ∈ obsv(Gk), then td(G− v) < k+1 for every vertex v. Thus there exists

a ranking ρ of G− v using k or fewer colors. Extend ρ to a ranking of G by labeling
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v as k + 1. If G is (k + 1)-unique, for any vertex v in G there is an optimal ranking

ρ for which v is the unique vertex with rank k+ 1. Since td(G) = k+ 1, the labeling

ρ restricted to G− v is a ranking using fewer than k + 1 colors.

The notion of t-uniqueness suggests a certain minimality in graphs with respect

to tree-depth. As in the proof of Lemma 2.2, we may begin with an optimal ranking

ρ of G that demonstrates the t-uniqueness of a vertex v and restrict ρ to G− v. We

derive an optimal ranking of G − v with fewer colors by decreasing by 1 each rank

of ρ that is greater than t. Thus the t-unique vertex v is the only impediment to a

ranking of the graph using fewer colors. Lemma 2.2 illustrates this type of minimality

in graphs in obsv(Gk), and we will observe a stronger form of it in many (possibly

all) graphs in obs≤(Gk).

We now present some results on t-uniqueness in graphs.

Lemma 2.3. If G is t-unique, then G is s-unique for all s such that t ≤ s ≤ td(G).

Proof. We show that if a vertex is k-unique for some k ≤ td(G)− 1 then it is (k+1)-

unique. Let ρ be an optimal ranking of G, and suppose v is the unique vertex with

color k. Form ρ′ from ρ by reassigning the color k to all vertices w such that ρ(w) =

k+1 and reassigning ρ′(v) = k+1. Let x and y be vertices ofG such that ρ′(x) = ρ′(y);
note that ρ(x) = ρ(y) by our construction. Then ρ′(x) 6= k + 1 since v is the unique

vertex with label k+1. In every xy-path there exists a vertex z for which ρ(z) > ρ(x).

If ρ′(x) > k + 1 or if ρ′(z) < k, then

ρ′(x) = ρ(x) < ρ(z) = ρ′(z).

Assume now that ρ′(x) ≤ k + 1 and ρ′(z) ≥ k. If ρ′(z) ≤ ρ′(x) then k ≤ ρ′(z) ≤
ρ′(x) ≤ k + 1. Since ρ(z) 6= ρ(x), we have ρ′(z) 6= ρ′(x) by construction, implying

that ρ′(x) = k + 1, a contradiction. Hence ρ′(z) > ρ′(x) in every case and ρ′ is an
optimal ranking of G where v is the unique vertex with color k + 1.

In light of Lemmas 2.2 and 2.3, G ∈ obsv(Gk) for some k if and only ifG is t-unique

for some t. By Lemma 2.3 we can group the graphs in obsv(Gk) by the minimum t for

which they are t-unique. The 1-unique graphs are of particular interest because they

satisfy the most restrictive condition. Let Uk be the set of all graphs with tree-depth

k that are 1-unique.

Since Uk+1 is a subset of obsv(Gk), it is natural to ask whether it contains or is

contained in either obs⊆(Gk) or obs≤(Gk). This is not the case: Let Gk be the graph

obtained from C2k+1 by adding a chord between the neighbors u,w of a vertex v. We

will show in the next section thatGk is 1-unique and that td(Gk) = td(C2k+1) = k+2.

Since Gk contains C2k+1 as a subgraph, Gk 6∈ obs⊆(Gk+1). We will also show that

the graph C2k+2 is in obs⊆(Gk+1), but that it is not 1-unique. Thus obs⊆(Gk) and
Uk+1 are incomparable for all k ≥ 2. However, their intersection is of interest.
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Theorem 2.4. If G is 1-unique and subgraph-critical with tree-depth k + 1, then G

is (k + 1)-critical; in symbols,

Uk+1 ∩ obs⊆(Gk) ⊆ obs≤(Gk). (1)

If Conjecture 1.4 is true, then equality holds in (1).

The proof of Theorem 2.4 requires several preliminary steps, and we postpone

it until the next section. We close this section with a Venn diagram illustrating

the relationships between the sets of this section in the following �gure; the shaded

region indicates the set obs≤(Gk), and the question mark indicates the region that

Conjecture 1.4 states is empty.

Uk+1 obs⊆(Gk)

obsv(Gk)

obs≤(Gk)
?

Figure 3: Depiction of set intersections

3 Properties of 1-unique graphs

In this section we prove Theorem 2.4 and other claims from the previous section and

describe further properties of 1-unique graphs. We begin with a characterization of

1-unique vertices. Given a vertex v in a graph G, a star-clique transform at v removes

v from G and adds edges between the vertices in NG(v) so as to make them a clique.

Theorem 3.1. Let v be a vertex of a graph G, and let H be the graph obtained

through the star-clique transform at v of G. Vertex v is 1-unique in G if and only if

td(H) < td(G).

Theorem 3.1 is a consequence of a more general result on tree-depth that we will

prove �rst.

De�nition 3.1. Given a graph G and a subset S of its vertices, let G〈S〉 denote the
graph with vertex set S in which vertices u and v are adjacent if they are adjacent in

G or if some component of G−S has a vertex adjacent to u and a vertex adjacent to

v.

7



Theorem 3.2. If G is a graph, then

td(G) = min
S⊆V (G)

(td(G〈S〉) + td(G− S)) .

Furthermore, td(G) = td(G〈T 〉) + td(G − T ) if and only if there exists an optimal

ranking of G in which the vertices in T receive higher colors than the vertices outside

T .

Proof. We show �rst that for any S ⊆ V (G), we can obtain a ranking of G with

td(G〈S〉) + td(G− S) colors in which the vertices in S receive strictly higher colors

than the vertices outside S. Let α and β be optimal rankings of G − S and G〈S〉,
respectively. Construct a ranking ρ of G by de�ning ρ(v) = α(v) for all v ∈ V (G)−S
and ρ(w) = β(w) + td(G− S) for all w ∈ S.

We claim that ρ is a ranking of G. Suppose vertices x and y in G receive the same

color c, and consider a path P having x and y as its endpoints. Suppose �rst that

c ≤ td(G − S). If the path P includes a vertex of S, then P contains a vertex with

color greater than c, as desired. Otherwise, the path P is contained in G−S, and by

construction P contains a vertex colored with a value greater than c.

If instead c > td(G−S), then x and y both belong to S. Suppose u,w1, . . . , w`, v is

a list of consecutive vertices of P with the property that u, v ∈ S and w1, . . . , w` /∈ S.
Note that uv is an edge of G〈S〉, so we may form a path P ′ in G〈S〉 simply by

removing vertices not in S from the ordered list of vertices of P . Since β(x) = β(y)

and P ′ joins x and y in G〈S〉, some vertex of P ′ receives a higher color than β(x)

in the ranking β, and by construction this vertex is a vertex of P receiving a higher

color than c, as desired.

Thus td(G) ≤ minS⊆V (G) (td(G〈S〉) + td(G− S)), and if td(G〈T 〉)+td(G−T ) =
td(G) for some subset T of V (G), then the coloring described above is an optimal

ranking of G in which the vertices of T receive higher colors than those outside T .

We now show that if T ⊆ V (G) and there exists an optimal ranking of G in which

the vertices in T receive higher colors than the vertices outside T , then td(G) =

td(G〈T 〉)+ td(G−T ); this demonstrates equality in the inequality from the previous

paragraph. Suppose τ is a td(G)-ranking of G in which τ(v) > τ(w) whenever v ∈ T
and w /∈ T . Let β denote the restriction of τ to V (G) − T ; since τ is an optimal

coloring, we may assume that β is an optimal ranking of G−T . Now de�ne a labeling

α of the vertices of T by letting α(v) = τ(v)−td(G−T ). We claim that α is a ranking

of G〈T 〉. Clearly α(v) ≥ 1 for all v ∈ T . Suppose now that there exist distinct vertices

x and y in T such that α(x) = α(y), and let P be a path joining x and y in G〈T 〉.

For any two adjacent vertices u and v in G〈T 〉, either uv is an edge of G, or there

exists a path 〈w1, . . . , w`〉 in G− T such that uw1 and w`v are edges in G. Modify P

to obtain a walkW in G by inserting such a path between each pair u, v of consecutive

vertices of P that are nonadjacent in G. The walk W contains a path P ′ between x
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and y in G; by assumption, P ′ contains a vertex z such that τ(z) > τ(x). Since τ

assigns larger colors to vertices in T than to vertices not in T , we have z ∈ T . This
forces z to be a vertex of P , and it follows that α is a ranking of G〈T 〉. If α were

not an optimal ranking of G〈S〉, then replacing it with an optimal ranking would

lead to a ranking of G using fewer colors than τ does, a contradiction. Thus τ uses

td(G〈T 〉) and td(G − T ) distinct colors on T and V (G) − T , respectively, and thus

td(G) = td(G〈T 〉) + td(G− T ).

Proof of Theorem 3.1. Let H be the graph obtained from G by performing a star-

clique transform at vertex v. The claim follows immediately by letting T = V (G)−{v}
and noting that H = G〈T 〉. �

Given an edge e of G, let G · e denote the graph obtained from G when edge e is

contracted.

Theorem 3.3. Let e ∈ E(G). If td(G · e) = td(G), then the endpoints of e are not

1-unique.

Proof. Let e = uv and let H be the graph obtained from a star-clique transformation

at u in G. Note that G · e is isomorphic to the graph obtained from G by deleting

u and adding edges from v to NG(u). Thus G · e is a subgraph of H and td(G) =

td(G·e) ≤ td(H). By Theorem 3.1, u is not 1-unique. Similarly v is not 1-unique.

To illustrate the utility of Theorems 3.1, 3.2, and 3.3, we provide two examples.

Theorem 3.2 will later be important in the proof of Theorems 4.1 and 4.2.

Example 3.1. Recall the graph Gk that was de�ned in the previous section as cycle

on 2k + 1 vertices with a single triangular chord. To establish the tree-depth of Gk

we use the following facts.

• (Katchalski et al. [3]) td(Pn) = blog2 nc+ 1, for n ≥ 1.

• (Bruoth and Hor�nák [12]) td(Cn) = blog2(n− 1)c+ 2, for n ≥ 3.

By minor inclusion and the second fact, td(Gk) ≥ td(C2k+1) = k + 2. Let v be a

vertex of degree 3 in Gk. Note that Gk − v is a path on 2k vertices. By the �rst fact

above there exists a ranking of Gk − v using k + 1 colors. Using the same colors in

Gk and coloring vertex v with k + 2 shows that td(Gk) ≤ k + 2.

Observe that a star-clique transform at a vertex of Gk yields a graph H isomorphic

to either C2k or C2k with a chord. Deleting a vertex of maximum degree in H yields

P2k−1. From the �rst fact above, td(P2k−1) = k and so as above we may add the

deleted vertex back to create a ranking forH using k+1 colors. Since td(H) < td(Gk)

regardless of the vertex chosen, Theorem 3.1 implies that Gk is 1-unique. �
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Example 3.2. From the facts cited in Example 3.1, td(C2k+2) = k+2 and td(P2k+2) =

k+1. Thus as stated in the previous section C2k+2 ∈ obs⊆(Gk+1). Note that contract-

ing an edge of C2k+2 yields C2k+1 and td(C2k+2) = td(C2k+1). Thus by Theorem

3.3, C2k+2 is not 1-unique. �

As mentioned in the previous section and illustrated in Examples 3.1 and 3.2, the

classes obs⊆ Gk and Uk+1 are incomparable under the subset relation. We now prove

Theorem 2.4, which deals with the intersection of these classes.

Proof of Theorem 2.4. If G ∈ Uk+1, then by Theorem 3.3 contracting any edge of

G decreases the tree-depth. If additionally G ∈ obs⊆(Gk), then deleting any edge of

G decreases the tree-depth. Thus G is minor-minimal with tree-depth k + 1. �.

Theorem 2.4 shows that 1-unique graphs that are also subgraph-minimal for their

tree-depth are in fact minor-minimal. Thus 1-unique graphs di�er from critical graphs

by at most some additional edges.

Observation 3.4. Let G be 1-unique. If e ∈ E(G) and td(G − e) = td(G), then

G− e is 1-unique.

Proof. Any ranking of G in which a single vertex has rank 1 is also a ranking for

G− e.

Theorem 3.5. Every 1-unique graph with tree-depth k has a k-critical spanning sub-

graph.

Proof. Let G be a 1-unique graph with tree-depth k. Iteratively delete edges whose

removal does not decrease the tree-depth until this is no longer possible. Let H be the

resulting graph. By Observation 3.4, H is 1-unique. By Theorem 2.4, H is k-critical.

Since H has the same vertex set as G, it is a spanning subgraph.

Note that in some sense, Theorem 3.5 states that the converse of Conjecture 1.4

is almost true, further suggesting strong ties between 1-uniqueness and criticality.

4 A construction for critical graphs

The edge-addition result in Theorem 1.1 allows us to construct critical graphs with

arbitrarily large tree-depth. In this section we extend Theorem 1.1 by using the

property of 1-uniqueness. We then show that Conjectures 1.2 and 1.4 hold for all

graphs generated by our construction.

The construction is as follows: henceforth letH be an s-critical graph with vertices

v1, . . . , vq, and let L1, . . . Lq be (r+1)-critical graphs. Form a graph G by choosing a
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vertex wi from each Li and identifying vi and wi for all i ∈ {1, . . . , q}. (We say that

the graphs Li are adjoined at the vertices vi of H.) In the following results we show

that G has the properties we desire.

Theorem 4.1. The graph G satis�es td(G) = r + s.

Proof. By Theorem 3.2,

td(G) ≤ td (G〈V (H)〉) + td (G− V (H))

= td(H) + td ((L1 − w1) + · · ·+ (Lq − wq)) = r + s.

We prove td(G) ≥ r + s by induction on s. When s = 1, we have G = L1 and

td(G) = r + 1. If s > 1, consider an optimal ranking for G and suppose the vertex

with highest rank is in Li. Since H is s-critical, H − vi has a (s − 1)-critical minor

M . Consider the sequence of contractions and deletions that take H − vi to M .

These same operations performed on G−V (Li) produce a graph that has as a minor

M with one of L1, . . . , Li−1, Li+1, . . . , Lq adjoined at each vertex as before. By the

induction hypothesis, this proper minor of G has tree-depth at least r + s− 1. Thus

td(G) ≥ r + s.

Theorem 4.2. If the graph H is 1-unique, then G is (r + s)-critical. If both H and

the graphs Li for i = {1, . . . , q} are 1-unique, then G is 1-unique. Furthermore, if

|V (H)| ≤ 2td(H)−1 and |V (Li)| ≤ 2td(Li)−1 for each i, then |V (G)| ≤ 2td(G)−1.

Proof. Suppose �rst that H is 1-unique. We know from Theorem 4.1 that td(G) =

r + s. To show that G is (r + s)-critical it is su�cient to consider contracting or

deleting a single edge e. Let G′ be the resulting graph.

If e is an edge of H, then the vertices of G′ corresponding to H induce a subgraph

with tree-depth s− 1. By Theorem 3.2,

td(G′) ≤ td (G′〈V (H)〉) + td (G′ − V (H))

= td(H)− 1 + td ((L1 − w1) + · · ·+ (Lq − wq)) = r + s− 1.

If e is an edge of some Lj , then the vertices of G′ corresponding to Lj induce a

subgraph with tree-depth r. Furthermore, the graph G′〈V (H)− {vj}〉 is isomorphic

to the graph produced via a star-clique transform at vj in H. Since H is 1-unique,

this graph has tree-depth less than s by Theorem 3.1. It follows by Theorem 3.2 that

td(G′) ≤ td (G′〈V (H)− {vj}〉) + td (G′ − (V (H)− {vj})) < r + s.

Thus G is (r + s)-critical.

Assume now that H and the graphs Li for i = {1, . . . , q} are all 1-unique. Pick

an arbitrary vertex u and suppose that u ∈ V (Lj). Let G′ and L′j be the graphs
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Figure 4: A graph in S6

resulting from a star-clique transform at u in G and in Lj , respectively, and let H ′

be the graph resulting from a star-clique transform at vj in H. By Theorem 3.2,

td(G′) ≤ td (G′〈V (H)− {vj}〉) + td (G′ − (V (H)− {vj}))
= td(H ′) + td

(
L′j + (L1 − w1) + · · ·+ (Lq − wq)

)
≤ r + s− 1,

where we omit (Lj − wj) in the disjoint union (L1 − w1) + · · · + (Lq − wq) on the

second line. By Theorem 3.1, G is 1-unique.

Suppose |V (H)| ≤ 2td(H)−1 = 2s−1 and |V (Li)| ≤ 2td(Li)−1 = 2r for each i.

Since every vertex of G belongs to some Li with 1 ≤ i ≤ |V (H)| we have |V (G)| ≤
|V (H)|maxi |V (Li)| ≤ 2s−12r = 2td(G)−1.

Example 4.1. The graph in Figure 4 is constructed from a 4-critical graph (shown

with shaded vertices) by adjoining copies of the 3-critical graphs P4 and K3. By

Theorem 4.2, the graph is 6-critical. �

As shown by Dvo°ák, Giannopoulou, and Thilikos [10, 11], for any positive integer

k ≥ 2 there are
1

2
22

k−2−k+1(1 + 22
k−2−k+1)

critical trees with tree-depth k, and each of these trees can be obtained by joining by

an edge two critical trees with tree-depth k− 1. Since K2 is 1-unique, these trees are

all produced by the construction above; hence all critical trees are 1-unique, and the

expression above is a lower bound on the number of 1-unique critical graphs.

More generally, given any family F of graphs already determined to be critical

and 1-unique, with our construction we may inductively generate increasingly large

families of critical graphs. Let S2 = {K2}, and for k > 2 de�ne Sk to be the family

consisting of all the k-critical graphs in F , together with all graphs G that may be

constructed as above with H taken from Ss and the Li's taken from Sr+1 such that

r ≥ 1, s ≥ 2, and r + s = k.

12



By the results of this section, Sk is a family of k-critical graphs that are all

1-unique. Furthermore, if Conjecture 1.2 holds for all elements of F , then by The-

orem 4.2 it holds for all elements of Sk. Clearly the size of the class Sk depends on

the family F , and it is an interesting task to �nd new in�nite families of critical,

1-unique graphs that may be included in F . Using the techniques similar to those in

Examples 3.1 and 3.2, it is possible to show [13] that each of the following graphs is

k-critical and 1-unique and satis�es Conjecture 1.2:

• For each k ≥ 1 and s ∈ {1, . . . , k}, a graph Q obtained in the following way:

Let H0 be a complete graph with s vertices, and for some q ∈ {1, . . . , s}, let
H1, . . . ,Hq be vertex-disjoint complete graphs, each with k−s vertices. Given a

partition π1+ · · ·+πq of s into positive integers, choose a partition B1, . . . , Bq of

the vertices of H0 so that |Bi| = πi for all i, and form Q by adding to the disjoint

union H0 +H1 + · · ·+Hq all possible edges between vertices in Bi and vertices

of Hi, for all i. (When s = 1 or s = k, or when q = 1, the graph Q is isomorphic

to Kk. Note that graph in Figure 1 with degree sequence (3, 3, 3, 2, 1) also has

this form.)

• For each k ≥ 3 and t such that 0 ≤ t ≤ 2k−2 − 2, the graph Rk,t obtained

by taking a path with 2k−2 + 1 + t vertices and adding an edge between the

two vertices at distance t from the endpoints. (Note that Rk,0 = C2k−2+1, and

Figure 1 contains R3,0, R4,0, R4,1, and R4,2.)

An open question is whether it is possible to �nd a class F with a simple and

nontrivial description such that every (1-unique) k-critical graph belongs to Sk.

Alternatively, perhaps the construction may be generalized. Note that graphs

generated by our construction are formed by �overlapping� smaller critical, 1-unique

graphs (the graphs Li) on vertices of a central graph that is also critical (the graph

H). The graph Q in the example above shares a similar property; it may be considered

as the result of overlapping complete graphs K|Bi|+k−s on the complete graph H0.

Weakening the requirements on H or on the nature of the overlaps with the Li may

produce still more examples of critical and/or 1-unique graphs.

If in attempting to apply a more general construction, however, the vertices of a

single Li are carelessly identi�ed with more than one vertex of H, then the graph

G〈V (H)〉 may no longer be critical or have other properties that allow us to ensure

that G is critical with a desired tree-depth. We leave it as an open question to

determine further suitable conditions for maintaining criticality or 1-uniqueness while

identifying multiple vertices in each Li with vertices in H.
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