46 research outputs found

    Timing and dynamics of Late Wolstonian Substage 'Moreton Stadial' (MIS 6) glaciation in the English West Midlands, UK

    Get PDF
    Glaciation during the late Middle Pleistocene is widely recognized across continental northwest Europe, but its extent and palaeoenvironmental significance in the British Isles are disputed. Although glaciogenic sediments at Wolston, Warwickshire, in the English West Midlands, have been used to define the stratotype of the Wolstonian Stage, their age has been variably assigned between marine isotope stages (MIS) 12 and 6. Here we present sedimentological and stratigraphical observations from five sites across the English West Midlands whose chronology is constrained by new luminescence ages from glaciofluvial sediments, supplemented by cosmogenic 36 Cl exposure dating of erratic boulders. The ages suggest that between 199 ± 5 and 147 ± 2.5 ka the British Ice Sheet advanced into the English West Midlands as far south as Moreton-in-Marsh, Gloucestershire. This advance is assigned to the Moreton Stadial of the Late Wolstonian Substage. Dating of the glaciation to this substage allows correlation of the Moreton Stadial glacial deposits in the English West Midlands with those of the Drenthe Stadial during the Late Saalian Substage across continental northwest Europe

    The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    Get PDF
    publisher: Elsevier articletitle: The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa journaltitle: Geomorphology articlelink: http://dx.doi.org/10.1016/j.geomorph.2016.11.011 content_type: article copyright: Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved

    Lipid Composition of the Human Eye: Are Red Blood Cells a Good Mirror of Retinal and Optic Nerve Fatty Acids?

    Get PDF
    International audienceBACKGROUND: The assessment of blood lipids is very frequent in clinical research as it is assumed to reflect the lipid composition of peripheral tissues. Even well accepted such relationships have never been clearly established. This is particularly true in ophthalmology where the use of blood lipids has become very common following recent data linking lipid intake to ocular health and disease. In the present study, we wanted to determine in humans whether a lipidomic approach based on red blood cells could reveal associations between circulating and tissue lipid profiles. To check if the analytical sensitivity may be of importance in such analyses, we have used a double approach for lipidomics. METHODOLOGY AND PRINCIPAL FINDINGS: Red blood cells, retinas and optic nerves were collected from 9 human donors. The lipidomic analyses on tissues consisted in gas chromatography and liquid chromatography coupled to an electrospray ionization source-mass spectrometer (LC-ESI-MS). Gas chromatography did not reveal any relevant association between circulating and ocular fatty acids except for arachidonic acid whose circulating amounts were positively associated with its levels in the retina and in the optic nerve. In contrast, several significant associations emerged from LC-ESI-MS analyses. Particularly, lipid entities in red blood cells were positively or negatively associated with representative pools of retinal docosahexaenoic acid (DHA), retinal very-long chain polyunsaturated fatty acids (VLC-PUFA) or optic nerve plasmalogens. CONCLUSIONS AND SIGNIFICANCE: LC-ESI-MS is more appropriate than gas chromatography for lipidomics on red blood cells, and further extrapolation to ocular lipids. The several individual lipid species we have identified are good candidates to represent circulating biomarkers of ocular lipids. However, further investigation is needed before considering them as indexes of disease risk and before using them in clinical studies on optic nerve neuropathies or retinal diseases displaying photoreceptors degeneration

    Climate variability over the last 35,000 years recorded in marine and terrestrial archives in the Australian region: an OZ-INTIMATE compilation.

    No full text
    The Australian region spans some 600 of latitude and 500 of longitude and displays considerable regional climate variability both today and during the Late Quaternary. A synthesis of marine and terrestrial climate records, combining findings from the Southern Ocean, temperate, tropical and arid zones, identifies a complex response of climate proxies to a background of changing boundary conditions over the last 35,000 years. Climate drivers include the seasonal timing of insolation, greenhouse gas content of the atmosphere, sea level rise and ocean and atmospheric circulation changes. Our compilation finds few climatic events that could be used to construct a climate event stratigraphy for the entire region, limiting the usefulness of this approach. Instead we have taken a spatial approach, looking to discern the patterns of change across the continent. The data identify the clearest and most synchronous climatic response at the time of the Last Glacial Maximum (LGM) (21 +/- 3 ka), with unambiguous cooling recorded in the ocean, and evidence of glaciation in the highlands of tropical New Guinea, southeast Australia and Tasmania. Many terrestrial records suggest drier conditions, but with the timing of inferred snowmelt, and changes to the rainfall/runoff relationships, driving higher river discharge at the LGM. In contrast, the deglaciation is a time of considerable south-east to north-west variation across the region. Warming was underway in all regions by 17 ka. Post-glacial sea level rise and its associated regional impacts have played an important role in determining the magnitude and timing of climate response in the north-west of the continent in contrast to the southern latitudes. No evidence for cooling during the Younger Dryas chronozone is evident in the region, but the Antarctic cold reversal clearly occurs south of Australia. The Holocene period is a time of considerable climate variability associated with an intense monsoon in the tropics early in the Holocene, giving way to a weakened monsoon and an increasingly El Nino-dominated ENSO to the present. The influence of ENSO is evident throughout the southeast of Australia, but not the southwest. This climate history provides a template from which to assess the regionality of climate events across Australia and make comparisons beyond our region.© 2013, Elsevier Ltd.Oz-Intimate Members: L. K. Armand, L. K. Ayliffe, M. Curran, P. De Deckker, L. S. Devriendt, J. Dodson, A. Dosseto, G. B. Dunbar, R. N. Drysdale, D. Fink, M. Fischer, M.S. Fletcher, T. Fujioka, M.K. Gagan, ML. Griffiths, D. Haberlah, S. G. Haberle, U. Heikkila, H. Heijnis, P. P. Hesse, A. Hilgers, M. Ho, W. Howard, Q. Hua, T. Kelly, J. Larsen, S. Lewis, J. Lomax, A. Mackintosh, J. H. May, H. V. McGregor, K. Meisner, S. D. Mooney, P.T. Moss, G. C. Nanson, J. Pedro, A. Purcell, J. Shulmeister, C. Sloss, Z. Swander, J. Tibby, P. Treble, S. van der Kaars, D. White, C. Woodward

    Late Quaternary palaeoenvironmental change in the Australian drylands

    No full text
    In this paper we synthesise existing palaeoenvironmental data from the arid and semi-arid interior of the Australian continent for the period 40–0 ka. Moisture is the predominant variable controlling environmental change in the arid zone. Landscapes in this region respond more noticeably to changes in precipitation than to temperature. Depending on their location, arid zone records broadly respond to tropical monsoon-influenced climate regimes, the temperate latitude westerly systems, or a combination of both. The timing and extent of relatively arid and humid phases vary across the continent, in particular between the westerly wind-controlled temperate latitudes, and the interior and north which are influenced by tropically sourced precipitation. Relatively humid phases in the Murray-Darling Basin on the semi-arid margins, which were characterised by large rivers most likely fed by snow melt, prevailed from 40 ka to the Last Glacial Maximum (LGM), and from the deglacial to the mid Holocene. By contrast, the Lake Eyre basin in central Australia remained relatively dry throughout the last 40 ka, with lake high stands at Lake Frome around 35–30 ka, and parts of the deglacial period and the mid-Holocene. The LGM was characterised by widespread relative aridity and colder conditions, as evidenced by extensive desert dune activity and dust transport, lake level fall, and reduced but episodic fluvial activity. The climate of the deglacial period was spatially divergent. The southern part of the continent experienced a brief humid phase around ∼17–15 ka, followed by increased dune activity around ∼14–10 ka. This contrasts with the post-LGM persistence of arid conditions in the north, associated with a lapsed monsoon and reflected in lake level lows and reduced fluvial activity, followed by intensification of the monsoon and increasingly effective precipitation from ∼14 ka. Palaeoenvironmental change during the Holocene was also spatially variable. The early to mid-Holocene was, however, generally characterised by moderately humid conditions, demonstrated by lake level rise, source-bordering dune activity, and speleothem growth, persisting at different times across the continent. Increasingly arid conditions developed into the late Holocene, particularly in the central arid zone. © 2012 Elsevier Ltd
    corecore