4,556 research outputs found

    Cosmological Bounds on Spatial Variations of Physical Constants

    Full text link
    We derive strong observational limits on any possible large-scale spatial variation in the values of physical 'constants' whose space-time evolution is driven by a scalar field. The limits are imposed by the isotropy of the microwave background on large angular scales in theories which describe space and time variations in the fine structure constant, the electron-proton mass ratio, and the Newtonian gravitational constant, G. Large-scale spatial fluctuations in the fine structure constant are bounded by 2x10^-9 and 1.2x10^-8 in the BSBM and VSL theories respectively, fluctuations in the electron-proton mass ratio by 9x10^-5 in the BM theory and fluctuations in G by 3.6x10^-10 in Brans-Dicke theory. These derived bounds are significantly stronger than any obtainable by direct observations of astrophysical objects at the present time.Comment: 13 pages, 1 table, typos corrected, refs added. Published versio

    Bouncing Universes with Varying Constants

    Full text link
    We investigate the behaviour of exact closed bouncing Friedmann universes in theories with varying constants. We show that the simplest BSBM varying-alpha theory leads to a bouncing universe. The value of alpha increases monotonically, remaining approximately constant during most of each cycle, but increasing significantly around each bounce. When dissipation is introduced we show that in each new cycle the universe expands for longer and to a larger size. We find a similar effect for closed bouncing universes in Brans-Dicke theory, where GG also varies monotonically in time from cycle to cycle. Similar behaviour occurs also in varying speed of light theories

    Dynamical study of the empty Bianchi type I model in generalised scalar-tensor theory

    Full text link
    A dynamical study of the generalised scalar-tensor theory in the empty Bianchi type I model is made. We use a method from which we derive the sign of the first and second derivatives of the metric functions and examine three different theories that can all tend towards relativistic behaviours at late time. We determine conditions so that the dynamic be in expansion and decelerated at late time.Comment: 18 pages, 3 figures, to appear in General Relativity and Gravitatio

    Cosmological milestones and energy conditions

    Full text link
    Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the "big bang", and possibly a "big crunch". However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with "big rips" and "sudden singularities" added to the mix, as well as renewed interest in non-singular cosmological events such as "bounces" and "turnarounds". In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a "scale-factor singularity" is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.Comment: 8 pages, 1 table, conference proceedings for NEB XII conference in Nafplio, Greec

    Newtonian nonlinear hydrodynamics and magnetohydrodynamics

    Full text link
    We use covariant methods to analyse the nonlinear evolution of self-gravitating, non-relativistic media. The formalism is first applied to imperfect fluids, aiming at the kinematic effects of viscosity, before extended to inhomogeneous magnetised environments. The nonlinear electrodynamic formulae are derived and successively applied to electrically resistive and to highly conductive fluids. By nature, the covariant equations isolate the magnetic effects on the kinematics and the dynamics of the medium, combining mathematical transparency and physical clarity. Employing the Newtonian analogue of the relativistic 1+3 covariant treatment, also facilitates the direct comparison with the earlier relativistic studies and helps to identify the differences in an unambiguous way. The purpose of this work is to set the framework and take a first step towards the detailed analytical study of complex nonlinear systems, like non-relativistic astrophysical plasmas and collapsing protogalactic clouds.Comment: Typos corrected, references added and updated (MNRAS in press

    Cosmological dynamics of exponential gravity

    Full text link
    We present a detailed investigation of the cosmological dynamics based on exp(R/Λ)\exp (-R/{\Lambda}) gravity. We apply the dynamical system approach to both the vacuum and matter cases and obtain exact solutions and their stability in the finite and asymptotic regimes. The results show that cosmic histories exist which admit a double de-Sitter phase which could be useful for describing the early and the late-time accelerating universe.Comment: 17 pages LaTeX, 3 figure

    Evidence of vorticity and shear at large angular scales in the WMAP data: a violation of cosmological isotropy?

    Full text link
    Motivated by the large-scale asymmetry observed in the cosmic microwave background sky, we consider a specific class of anisotropic cosmological models -- Bianchi type VII_h -- and compare them to the WMAP first-year data on large angular scales. Remarkably, we find evidence of a correlation which is ruled out as a chance alignment at the 3sigma level. The best fit Bianchi model corresponds to x=0.55, Omega_0=0.5, a rotation axis in the direction (l,b)=(222degr,-62degr), shear (sigma/H)_0=2.4e-10 and a right--handed vorticity (omega/H)_0=6.1e-10. Correcting for this component greatly reduces the significance of the large-scale power asymmetry, resolves several anomalies detected on large angular scales (ie. the low quadrupole amplitude and quadrupole/octopole planarity and alignment), and can account for a non--Gaussian "cold spot" on the sky. Despite the apparent inconsistency with the best-fit parameters required in inflationary models to account for the acoustic peaks, we consider the results sufficiently provocative to merit further consideration.Comment: 4 pages, 3 figures; emulateapj.cls; ApJL accepted version plus fixed error in vorticity calculation (sqrt(2) off in Table 1, abstract, and conclusions); basic conclusions unchange
    corecore