339 research outputs found
The twin paradox in compact spaces
Twins travelling at constant relative velocity will each see the other's time
dilate leading to the apparent paradox that each twin believes the other ages
more slowly. In a finite space, the twins can both be on inertial, periodic
orbits so that they have the opportunity to compare their ages when their paths
cross. As we show, they will agree on their respective ages and avoid the
paradox. The resolution relies on the selection of a preferred frame singled
out by the topology of the space.Comment: to be published in PRA, 3 page
Note on Varying Speed of Light Cosmologies
The various requirements on a consistent varying speed of light (`VSL')
theory are surveyed, giving a short check-list of issues that should be
satisfactorily handled by such theories.Comment: 6 pages; to appear in the GRG Journa
Neutron Stars in a Varying Speed of Light Theory
We study neutron stars in a varying speed of light (VSL) theory of gravity in
which the local speed of light depends upon the value of a scalar field .
We find that the masses and radii of the stars are strongly dependent on the
strength of the coupling between and the matter field and that for
certain choices of coupling parameters, the maximum neutron star mass can be
arbitrarily small. We also discuss the phenomenon of cosmological evolution of
VSL stars (analogous to the gravitational evolution in scalar-tensor theories)
and we derive a relation showing how the fractional change in the energy of a
star is related to the change in the cosmological value of the scalar field.Comment: 15 pages, 2 figures. Added solutions with a more realistic equation
of state. To be published in PR
Stability of Closed Timelike Curves in Goedel Universe
We study, in some detail, the linear stability of closed timelike curves in
the Goedel metric. We show that these curves are stable. We present a simple
extension (deformation) of the Goedel metric that contains a class of closed
timelike curves similar to the ones associated to the original Goedel metric.
This extension correspond to the addition of matter whose energy-momentum
tensor is analyzed. We find the conditions to have matter that satisfies the
usual energy conditions. We study the stability of closed timelike curves in
the presence of usual matter as well as in the presence of exotic matter
(matter that does satisfy the above mentioned conditions). We find that the
closed timelike curves in Goedel universe with or whithout the inclusion of
regular or exotic matter are also stable under linear perturbations. We also
find a sort of structural stability.Comment: 12 pages, 11 figures, RevTex, several typos corrected. GRG, in pres
Perturbation evolution with a non-minimally coupled scalar field
We recently proposed a simple dilaton-derived quintessence model in which the
scalar field was non-minimally coupled to cold dark matter, but not to
`visible' matter. Such couplings can be attributed to the dilaton in the low
energy limit of string theory, beyond tree level. In this paper we discuss the
implications of such a model on structure formation, looking at its impact on
matter perturbations and CMB anisotropies. We find that the model only deviates
from CDM and minimally coupled theories at late times, and is well
fitted to current observational data. The signature left by the coupling, when
it breaks degeneracy at late times, presents a valuable opportunity to
constrain non-minimal couplings given the wealth of new observational data
promised in the near future.Comment: Version appearing in Physical Review D. 10 pages, 9 figs. Comparison
with SN1a and projected MAP results, and appendix adde
Can inflationary models of cosmic perturbations evade the secondary oscillation test?
We consider the consequences of an observed Cosmic Microwave Background (CMB)
temperature anisotropy spectrum containing no secondary oscillations. While
such a spectrum is generally considered to be a robust signature of active
structure formation, we show that such a spectrum {\em can} be produced by
(very unusual) inflationary models or other passive evolution models. However,
we show that for all these passive models the characteristic oscillations would
show up in other observable spectra. Our work shows that when CMB polarization
and matter power spectra are taken into account secondary oscillations are
indeed a signature of even these very exotic passive models. We construct a
measure of the observability of secondary oscillations in a given experiment,
and show that even with foregrounds both the MAP and \pk satellites should be
able to distinguish between models with and without oscillations. Thus we
conclude that inflationary and other passive models can {\em not} evade the
secondary oscillation test.Comment: Final version accepted for publication in PRD. Minor improvements
have been made to the discussion and new data has been included. The
conclusions are unchagne
G\"odel Incompleteness and the Black Hole Information Paradox
Semiclassical reasoning suggests that the process by which an object
collapses into a black hole and then evaporates by emitting Hawking radiation
may destroy information, a problem often referred to as the black hole
information paradox. Further, there seems to be no unique prediction of where
the information about the collapsing body is localized. We propose that the
latter aspect of the paradox may be a manifestation of an inconsistent
self-reference in the semiclassical theory of black hole evolution. This
suggests the inadequacy of the semiclassical approach or, at worst, that
standard quantum mechanics and general relavity are fundamentally incompatible.
One option for the resolution for the paradox in the localization is to
identify the G\"odel-like incompleteness that corresponds to an imposition of
consistency, and introduce possibly new physics that supplies this
incompleteness. Another option is to modify the theory in such a way as to
prohibit self-reference. We discuss various possible scenarios to implement
these options, including eternally collapsing objects, black hole remnants,
black hole final states, and simple variants of semiclassical quantum gravity.Comment: 14 pages, 2 figures; revised according to journal requirement
STATIONARY SOLUTIONS IN BRANS-DICKE STOCHASTIC INFLATIONARY COSMOLOGY
In Brans-Dicke theory the Universe becomes divided after inflation into many
exponentially large domains with different values of the effective
gravitational constant. Such a process can be described by diffusion equations
for the probability of finding a certain value of the inflaton and dilaton
fields in a physical volume of the Universe. For a typical chaotic inflation
potential, the solutions for the probability distribution never become
stationary but grow forever towards larger values of the fields. We show here
that a non-minimal conformal coupling of the inflaton to the curvature scalar,
as well as radiative corrections to the effective potential, may provide a
dynamical cutoff and generate stationary solutions. We also analyze the
possibility of large nonperturbative jumps of the fluctuating inflaton scalar
field, which was recently revealed in the context of the Einstein theory. We
find that in the Brans--Dicke theory the amplitude of such jumps is strongly
suppressed.Comment: 19 pages, LaTe
Bounds from Primordial Black Holes with a Near Critical Collapse Initial Mass Function
Recent numerical evidence suggests that a mass spectrum of primordial black
holes (PBHs) is produced as a consequence of near critical gravitational
collapse. Assuming that these holes formed from the initial density
perturbations seeded by inflation, we calculate model independent upper bounds
on the mass variance at the reheating temperature by requiring the mass density
not exceed the critical density and the photon emission not exceed current
diffuse gamma-ray measurements. We then translate these results into bounds on
the spectral index n by utilizing the COBE data to normalize the mass variance
at large scales, assuming a constant power law, then scaling this result to the
reheating temperature. We find that our bounds on n differ substantially
(\delta n > 0.05) from those calculated using initial mass functions derived
under the assumption that the black hole mass is proportional to the horizon
mass at the collapse epoch. We also find a change in the shape of the diffuse
gamma-ray spectrum which results from the Hawking radiation. Finally, we study
the impact of a nonzero cosmological constant and find that the bounds on n are
strengthened considerably if the universe is indeed vacuum-energy dominated
today.Comment: 24 pages, REVTeX, 5 figures; minor typos fixed, two refs added,
version to be published in PR
All Static Circularly Symmetric Perfect Fluid Solutions of 2+1 Gravity
Via a straightforward integration of the Einstein equations with cosmological
constant, all static circularly symmetric perfect fluid 2+1 solutions are
derived. The structural functions of the metric depend on the energy density,
which remains in general arbitrary. Spacetimes for fluids fulfilling linear and
polytropic state equations are explicitly derived; they describe, among others,
stiff matter, monatomic and diatomic ideal gases, nonrelativistic degenerate
fermions, incoherent and pure radiation. As a by--product, we demonstrate the
uniqueness of the constant energy density perfect fluid within the studied
class of metrics. A full similarity of the perfect fluid solutions with
constant energy density of the 2+1 and 3+1 gravities is established.Comment: revtex4, 8 page
- …
