13 research outputs found
Constraints on the Variation of G from Primordial Nucleosynthesis
We study here the effect of a varying G on the evolution of the early
Universe and, in particular, on primordial nucleosynthesis. This variation of G
is modelled using the Brans-Dicke theory as well as a more general class of
scalar-tensor theories. Modified nucleosynthesis codes are used to investigate
this effect and the results obtained are used to constrain the parameters of
the theories. We extend previous studies of primordial nucleosynthesis in
scalar-tensor theories by including effects which can cause a slow variation of
G during radiation domination and by including a late-time accelerating phase
to the Universe's history. We include a brief discussion on the epoch of
matter-radiation equality in Brans-Dicke theory, which is also of interest for
determining the positions of the cosmic microwave background power-spectrum
peaks.Comment: 10 pages, 7 figures. Published versio
BBN For Pedestrians
The simplest, `standard' model of Big Bang Nucleosynthesis (SBBN) assumes
three light neutrinos (N_nu = 3) and no significant electron neutrino
asymmetry, leaving only one adjustable parameter: the baryon to photon ratio
eta. The primordial abundance of any one nuclide can, therefore, be used to
measure the baryon abundance and the value derived from the observationally
inferred primordial abundance of deuterium closely matches that from current,
non-BBN data, primarily from the WMAP survey. However, using this same estimate
there is a tension between the SBBN-predicted 4He and 7Li abundances and their
current, observationally inferred primordial abundances, suggesting that N_nu
may differ from the standard model value of three and/or that there may be a
non-zero neutral lepton asymmetry (or, that systematic errors in the abundance
determinations have been underestimated or overlooked). The differences are not
large and the allowed ranges of the BBN parameters permitted by the data are
quite small. Within these ranges, the BBN-predicted abundances of D, 3He, 4He,
and 7Li are very smooth, monotonic functions of eta, N_nu, and the lepton
asymmetry. It is possible to describe the dependencies of these abundances (or
powers of them) upon the three parameters by simple, linear fits which, over
their ranges of applicability, are accurate to a few percent or better. The
fits presented here have not been maximized for their accuracy but, for their
simplicity. To identify the ranges of applicability and relative accuracies,
they are compared to detailed BBN calculations; their utility is illustrated
with several examples. Given the tension within BBN, these fits should prove
useful in facilitating studies of the viability of proposals for non-standard
physics and cosmology, prior to undertaking detailed BBN calculations.Comment: Submitted to a Focus Issue on Neutrino Physics in New Journal of
Physics (www.njp.org
Primordial black hole constraints in cosmologies with early matter domination
Moduli fields, a natural prediction of any supergravity and
superstring-inspired supersymmetry theory, may lead to a prolonged period of
matter domination in the early Universe. This can be observationally viable
provided the moduli decay early enough to avoid harming nucleosynthesis. If
primordial black holes form, they would be expected to do so before or during
this matter dominated era. We examine the extent to which the standard
primordial black hole constraints are weakened in such a cosmology. Permitted
mass fractions of black holes at formation are of order , rather than
the usual or so. If the black holes form from density perturbations
with a power-law spectrum, its spectral index is limited to ,
rather than the obtained in the standard cosmology.Comment: 7 pages RevTeX file with four figures incorporated (uses RevTeX and
epsf). Also available by e-mailing ARL, or by WWW at
http://star-www.maps.susx.ac.uk/papers/infcos_papers.htm
Constraints on Cosmic Strings due to Black Holes Formed from Collapsed Cosmic String Loops
The cosmological features of primordial black holes formed from collapsed
cosmic string loops are studied. Observational restrictions on a population of
primordial black holes are used to restrict , the fraction of cosmic string
loops which collapse to form black holes, and , the cosmic string
mass-per-unit-length. Using a realistic model of cosmic strings, we find the
strongest restriction on the parameters and is due to the energy
density in photons radiated by the black holes. We also find that
inert black hole remnants cannot serve as the dark matter. If earlier, crude
estimates of are reliable, our results severely restrict , and
therefore limit the viability of the cosmic string large-scale structure
scenario.Comment: (Plain Tex, uses tables.tex -- wrapped lines corrected), 11 pages,
FERMILAB-Pub-93/137-
The Effect of Bound Dineutrons upon BBN
We have examined the effects of a bound dineutron, n2, upon big bang
nucleosynthesis (BBN) as a function of its binding energy B_n2. We find a
weakly bound dineutron has little impact but as B_n2 increases its presence
begins to alter the flow of free nucleons to helium-4. Due to this disruption,
and in the absence of changes to other binding energies or fundamental
constants, BBN sets a reliable upper limit of B_n2 <~ 2.5 MeV in order to
maintain the agreement with the observations of the primordial helium-4 mass
fraction and D/H abundance
The fundamental constants and their variation: observational status and theoretical motivations
This article describes the various experimental bounds on the variation of
the fundamental constants of nature. After a discussion on the role of
fundamental constants, of their definition and link with metrology, the various
constraints on the variation of the fine structure constant, the gravitational,
weak and strong interactions couplings and the electron to proton mass ratio
are reviewed. This review aims (1) to provide the basics of each measurement,
(2) to show as clearly as possible why it constrains a given constant and (3)
to point out the underlying hypotheses. Such an investigation is of importance
to compare the different results, particularly in view of understanding the
recent claims of the detections of a variation of the fine structure constant
and of the electron to proton mass ratio in quasar absorption spectra. The
theoretical models leading to the prediction of such variation are also
reviewed, including Kaluza-Klein theories, string theories and other
alternative theories and cosmological implications of these results are
discussed. The links with the tests of general relativity are emphasized.Comment: 56 pages, l7 figures, submitted to Rev. Mod. Phy
