56 research outputs found
Temperature and Polarization Patterns in Anisotropic Cosmologies
We study the coherent temperature and polarization patterns produced in
homogeneous but anisotropic cosmological models. We show results for all
Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V,
VII, VII and IX) to illustrate the range of possible behaviour. We
discuss the role of spatial curvature, shear and rotation in the geodesic
equations for each model and establish some basic results concerning the
symmetries of the patterns produced. We also give examples of the
time-evolution of these patterns in terms of the Stokes parameters , and
.Comment: 24 pages, 7 Figures, submitted to JCAP. Revised version: numerous
references added, text rewritten, and errors corrected
Large-scale magnetic fields from inflation in dilaton electromagnetism
The generation of large-scale magnetic fields is studied in dilaton
electromagnetism in inflationary cosmology, taking into account the dilaton's
evolution throughout inflation and reheating until it is stabilized with
possible entropy production. It is shown that large-scale magnetic fields with
observationally interesting strength at the present time could be generated if
the conformal invariance of the Maxwell theory is broken through the coupling
between the dilaton and electromagnetic fields in such a way that the resultant
quantum fluctuations in the magnetic field has a nearly scale-invariant
spectrum. If this condition is met, the amplitude of the generated magnetic
field could be sufficiently large even in the case huge amount of entropy is
produced with the dilution factor as the dilaton decays.Comment: 28 pages, 5 figures, the version accepted for publication in Phys.
Rev. D; some references are adde
Equation of state for Universe from similarity symmetries
In this paper we proposed to use the group of analysis of symmetries of the
dynamical system to describe the evolution of the Universe. This methods is
used in searching for the unknown equation of state. It is shown that group of
symmetries enforce the form of the equation of state for noninteracting scaling
multifluids. We showed that symmetries give rise the equation of state in the
form and energy density
, which
is commonly used in cosmology. The FRW model filled with scaling fluid (called
homological) is confronted with the observations of distant type Ia supernovae.
We found the class of model parameters admissible by the statistical analysis
of SNIa data. We showed that the model with scaling fluid fits well to
supernovae data. We found that and (), which can correspond to (hyper) phantom fluid, and to a
high density universe. However if we assume prior that
then the favoured model is close to concordance
CDM model. Our results predict that in the considered model with
scaling fluids distant type Ia supernovae should be brighter than in
CDM model, while intermediate distant SNIa should be fainter than in
CDM model. We also investigate whether the model with scaling fluid is
actually preferred by data over CDM model. As a result we find from
the Akaike model selection criterion prefers the model with noninteracting
scaling fluid.Comment: accepted for publication versio
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
Large-scale magnetic fields from inflation due to a -even Chern-Simons-like term with Kalb-Ramond and scalar fields
We investigate the generation of large-scale magnetic fields due to the
breaking of the conformal invariance in the electromagnetic field through the
-even dimension-six Chern-Simons-like effective interaction with a fermion
current by taking account of the dynamical Kalb-Ramond and scalar fields in
inflationary cosmology. It is explicitly demonstrated that the magnetic fields
on 1Mpc scale with the field strength of G at the present time
can be induced.Comment: 18 pages, 6 figures, version accepted for publication in Eur. Phys.
J.
String Cosmology: The Pre-Big Bang Scenario
A review is attempted of physical motivations, theoretical and
phenomenological aspects, as well as outstanding problems, of the pre-big bang
scenario in string cosmology.Comment: 46 pages, 8 Figures, Latex, Lectures delivered in Les Houches, July
199
Teaching of Energy Issues: A debate proposal for a GLobal Reorientation
The growing awareness of serious difficulties in the learning of energy issues has produced a great deal of research, most of which is focused on specific conceptual aspects. In our opinion, the difficulties pointed out in the literature are interrelated and connected to other aspects (conceptual as well as procedural and axiological), which are not sufficiently taken into account in previous research. This paper aims to carry out a global analysis in order to avoid the more limited approaches that deal only with individual aspects. From this global analysis we have outlined 24 propositions that are put forward for debate to lay the foundations for a profound reorientation of the teaching of energy topics in upper high school courses, in order to facilitate a better scientific understanding of these topics, avoid many students' misconceptions and enhance awareness of the current situation of planetary emergency
Effects of anisotropic dynamics on cosmic strings
The dynamics of cosmic strings is considered in anisotropic backgrounds. In
particular, the behaviour of infinitely long straight cosmic strings and of
cosmic string loops is determined. Small perturbations of a straight cosmic
string are calculated. The relevance of these results is discussed with respect
to the possible observational imprints of an anisotropic phase on the behaviour
of a cosmic string network.Comment: 16 pages, 9 figures; matches version published in JCA
Tracking development assistance for health and for COVID-19 : a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050
Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US per capita, purchasing-power parity-adjusted US8. 8 trillion (95% uncertainty interval [UI] 8.7-8.8) or 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 13.7 billion was targeted toward the COVID-19 health response. 1.4 billion was repurposed from existing health projects. 2.4 billion (17.9%) was for supply chain and logistics. Only 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe
- …
