278 research outputs found
Single-emitter quantum key distribution over 175 km of fiber with optimised finite key rates
Quantum key distribution with solid-state single-photon emitters is gaining
traction due to their rapidly improving performance and compatibility with
future quantum network architectures. In this work, we perform fibre-based
quantum key distribution with a quantum dot frequency-converted to telecom
wavelength, achieving count rates of 1.6 MHz with
. We demonstrate positive key rates
up to 175 km in the asymptotic regime. We then show that the community standard
analysis for non-decoy state QKD drastically overestimates the acquisition time
required to generate secure finite keys. Our improved analysis using the
multiplicative Chernoff bound reduces the required number of received signals
by a factor of over existing work, with the finite key rate approaching
the asymptotic limit at all achievable distances for acquisition times of one
hour. Over a practical distance of 100 km we achieve a finite key rate of 13
kbps after one minute of integration time. This result represents major
progress towards the feasibility of long-distance single-emitter QKD networks.Comment: 9 pages, 3 figure
On the gravitational production of superheavy dark matter
The dark matter in the universe can be in the form of a superheavy matter
species (WIMPZILLA). Several mechanisms have been proposed for the production
of WIMPZILLA particles during or immediately following the inflationary epoch.
Perhaps the most attractive mechanism is through gravitational particle
production, where particles are produced simply as a result of the expansion of
the universe. In this paper we present a detailed numerical calculation of
WIMPZILLA gravitational production in hybrid-inflation models and
natural-inflation models. Generalizing these findings, we also explore the
dependence of the gravitational production mechanism on various models of
inflation. We show that superheavy dark matter production seems to be robust,
with Omega_X h^2 ~ (M_X / (10^11 GeV))^2 (T_RH / (10^9 GeV)), so long as M_X <
H_I, where M_X is the WIMPZILLA mass, T_RH is the reheat temperature, and H_I
is the expansion rate of the universe during inflation.Comment: 26 pages, 7 figures; LaTeX; submitted to Physical Review D; minor
typographical error correcte
Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space
Stability analysis of the Bianchi type I universe in pure gravity theory is
studied in details. We first derive the non-redundant field equation of the
system by introducing the generalized Bianchi type I metric. This non-redundant
equation reduces to the Friedmann equation in the isotropic limit. It is shown
further that any unstable mode of the isotropic perturbation with respect to a
de Sitter background is also unstable with respect to anisotropic
perturbations. Implications to the choice of physical theories are discussed in
details in this paper.Comment: 5 pages, some comment adde
Identification of a Novel β-Cell Glucokinase (GCK) Promoter Mutation (−71G>C) That Modulates GCK Gene Expression Through Loss of Allele-Specific Sp1 Binding Causing Mild Fasting Hyperglycemia in Humans
OBJECTIVE: Inactivating mutations in glucokinase (GCK) cause mild fasting hyperglycemia. Identification of a GCK mutation has implications for treatment and prognosis; therefore, it is important to identify these individuals. A significant number of patients have a phenotype suggesting a defect in glucokinase but no abnormality of GCK. We hypothesized that the GCK beta-cell promoter region, which currently is not routinely screened, could contain pathogenic mutations; therefore, we sequenced this region in 60 such probands. RESEARCH DESIGN AND METHODS: The beta-cell GCK promoter was sequenced in patient DNA. The effect of the identified novel mutation on GCK promoter activity was assessed using a luciferase reporter gene expression system. Electrophoretic mobility shift assays (EMSAs) were used to determine the impact of the mutation on Sp1 binding. RESULTS: A novel -71G>C mutation was identified in a nonconserved region of the human promoter sequence in six apparently unrelated probands. Family testing established cosegregation with fasting hyperglycemia (> or = 5.5 mmol/l) in 39 affected individuals. Haplotype analysis in the U.K. family and four of the Slovakian families demonstrated that the mutation had arisen independently. The mutation maps to a potential transcriptional activator binding site for Sp1. Reporter assays demonstrated that the mutation reduces promoter activity by up to fourfold. EMSAs demonstrated a dramatic reduction in Sp1 binding to the promoter sequence corresponding to the mutant allele. CONCLUSIONS: A novel beta-cell GCK promoter mutation was identified that significantly reduces gene expression in vitro through loss of regulation by Sp1. To ensure correct diagnosis of potential GCK-MODY (maturity-onset diabetes of the young) cases, analysis of the beta-cell GCK promoter should be included
Friedmann Equation and Stability of Inflationary Higher Derivative Gravity
Stability analysis on the De Sitter universe in pure gravity theory is known
to be useful in many aspects. We first show how to complete the proof of an
earlier argument based on a redundant field equation. It is shown further that
the stability condition applies to Friedmann-Robertson-Walker spaces
based on the non-redundant Friedmann equation derived from a simple effective
Lagrangian. We show how to derive this expression for the Friedmann equation of
pure gravity theory. This expression is also generalized to include scalar
field interactions.Comment: Revtex, 6 pages, Add two more references, some typos correcte
Neutrino Interferometry In Curved Spacetime
Gravitational lensing introduces the possibility of multiple (macroscopic)
paths from an astrophysical neutrino source to a detector. Such a multiplicity
of paths can allow for quantum mechanical interference to take place that is
qualitatively different to neutrino oscillations in flat space. After an
illustrative example clarifying some under-appreciated subtleties of the phase
calculation, we derive the form of the quantum mechanical phase for a neutrino
mass eigenstate propagating non-radially through a Schwarzschild metric. We
subsequently determine the form of the interference pattern seen at a detector.
We show that the neutrino signal from a supernova could exhibit the
interference effects we discuss were it lensed by an object in a suitable mass
range. We finally conclude, however, that -- given current neutrino detector
technology -- the probability of such lensing occurring for a
(neutrino-detectable) supernova is tiny in the immediate future.Comment: 25 pages, 1 .eps figure. Updated version -- with simplified notation
-- accepted for publication in Phys.Rev.D. Extra author adde
Single-emitter quantum key distribution over 175 km of fibre with optimised finite key rates
Quantum key distribution with solid-state single-photon emitters is gaining traction due to their rapidly improving performance and compatibility with future quantum networks. Here we emulate a quantum key distribution scheme with quantum-dot-generated single photons frequency-converted to 1550 nm, achieving count rates of 1.6 MHz with g20=3.6% and asymptotic positive key rates over 175 km of telecom fibre. We show that the commonly used finite-key analysis for non-decoy state QKD drastically overestimates secure key acquisition times due to overly loose bounds on statistical fluctuations. Using the tighter multiplicative Chernoff bound to constrain the estimated finite key parameters, we reduce the required number of received signals by a factor 108. The resulting finite key rate approaches the asymptotic limit at all achievable distances in acquisition times of one hour, and at 100 km we generate finite keys at 13 kbps for one minute of acquisition. This result is an important step towards long-distance single-emitter quantum networking
f(R) theories
Over the past decade, f(R) theories have been extensively studied as one of
the simplest modifications to General Relativity. In this article we review
various applications of f(R) theories to cosmology and gravity - such as
inflation, dark energy, local gravity constraints, cosmological perturbations,
and spherically symmetric solutions in weak and strong gravitational
backgrounds. We present a number of ways to distinguish those theories from
General Relativity observationally and experimentally. We also discuss the
extension to other modified gravity theories such as Brans-Dicke theory and
Gauss-Bonnet gravity, and address models that can satisfy both cosmological and
local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in
Relativity, Published version, Comments are welcom
A Precise Measurement of the Neutron Magnetic Form Factor GMn in the Few-GeV2 Region
The neutron elastic magnetic form factor GMn has been extracted from
quasielastic electron scattering data on deuterium with the CEBAF Large
Acceptance Spectrometer (CLAS) at Jefferson Lab. The kinematic coverage of the
measurement is continuous from Q2=1 GeV2 to 4.8 GeV2. High precision was
achieved by employing a ratio technique in which many uncertainties cancel, and
by a simultaneous in-situ calibration of the neutron detection efficiency, the
largest correction to the data. Neutrons were detected using the CLAS
electromagnetic calorimeters and the time-of-flight scintillators. Data were
taken at two different electron beam energies, allowing up to four
semi-independent measurements of GMn to be made at each value of Q2. The dipole
parameterization is found to provide a good description of the data over the
measured Q2 range.Comment: 14 pages, 5 figures, revtex4, submitted to Physical Review Letters,
Revised version has changes recommended by journal referee
- …