14 research outputs found
An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences
[EN] In the field of virtual reality (VR), many efforts have been made to analyze presence, the sense of being in the virtual world. However, it is only recently that functional magnetic resonance imaging (fMRI) has been used to study presence during an automatic navigation through a virtual environment. In the present work, our aim was to use fMRI to study the sense of presence during a VR-free navigation task, in comparison with visualization of photographs and videos (automatic navigations through the same environment). The main goal was to analyze the usefulness of fMRI for this purpose, evaluating whether, in this context, the interaction between the subject and the environment is performed naturally, hiding the role of technology in the experience. We monitored 14 right-handed healthy females aged between 19 and 25 years. Frontal, parietal and occipital regions showed their involvement during free virtual navigation. Moreover, activation in the dorsolateral prefrontal cortex was also shown to be negatively correlated to sense of presence and the postcentral parietal cortex and insula showed a parametric increased activation according to the condition-related sense of presence, which suggests that stimulus attention and self-awareness processes related to the insula may be linked to the sense of presence.This study was funded by the Ministerio de Educación y Ciencia Spain, Project Game Teen (TIN2010-20187) and partially
by projects Consolider-C (SEJ2006-14301/PSIC), ‘CIBER of Physiopathology of Obesity and Nutrition, an initiative
of ISCIII’, the Excellence Research Program PROMETEO (Generalitat Valenciana. Conselleria de Educación, 2008-157)
and the Consolider INGENIO program (CSD2007-00012). The work of Miriam Clemente was supported by the Generalitat
Valenciana under a VALi+d Grant.Clemente Bellido, M.; Rey, B.; Rodríguez Pujadas, A.; Barros Loscertales, A.; Baños, RM.; Botella, C.; Alcañiz Raya, ML.... (2014). An fMRI Study to Analyze Neural Correlates of Presence during Virtual Reality Experiences. Interacting with Computers. 26(3):269-284. https://doi.org/10.1093/iwc/iwt037S269284263Aguirre, G. K., Detre, J. A., Alsop, D. C., & D’Esposito, M. (1996). The Parahippocampus Subserves Topographical Learning in Man. Cerebral Cortex, 6(6), 823-829. doi:10.1093/cercor/6.6.823Alcañiz, M., Rey, B., Tembl, J., & Parkhutik, V. (2009). A Neuroscience Approach to Virtual Reality Experience Using Transcranial Doppler Monitoring. Presence: Teleoperators and Virtual Environments, 18(2), 97-111. doi:10.1162/pres.18.2.97Amaro, E., & Barker, G. J. (2006). Study design in fMRI: Basic principles. Brain and Cognition, 60(3), 220-232. doi:10.1016/j.bandc.2005.11.009Astur, R. S., St. Germain, S. A., Baker, E. K., Calhoun, V., Pearlson, G. D., & Constable, R. T. (2005). fMRI Hippocampal Activity During a VirtualRadial Arm Maze. Applied Psychophysiology and Biofeedback, 30(3), 307-317. doi:10.1007/s10484-005-6385-zBaños, R. M., Botella, C., Garcia-Palacios, A., Villa, H., Perpiña, C., & Alcañiz, M. (2000). Presence and Reality Judgment in Virtual Environments: A Unitary Construct? CyberPsychology & Behavior, 3(3), 327-335. doi:10.1089/10949310050078760Baumann, S., Neff, C., Fetzick, S., Stangl, G., Basler, L., Vereneck, R., & Schneider, W. (2003). A Virtual Reality System for Neurobehavioral and Functional MRI Studies. CyberPsychology & Behavior, 6(3), 259-266. doi:10.1089/109493103322011542Maertens, M. (2008). Retinotopic activation in response to subjective contours in primary visual cortex. Frontiers in Human Neuroscience, 2, 1-7. doi:10.3389/neuro.09.002.2008Baumgartner, T., Valko, L., Esslen, M., & Jäncke, L. (2006). Neural Correlate of Spatial Presence in an Arousing and Noninteractive Virtual Reality: An EEG and Psychophysiology Study. CyberPsychology & Behavior, 9(1), 30-45. doi:10.1089/cpb.2006.9.30Belliveau, J., Kennedy, D., McKinstry, R., Buchbinder, B., Weisskoff, R., Cohen, M., … Rosen, B. (1991). Functional mapping of the human visual cortex by magnetic resonance imaging. Science, 254(5032), 716-719. doi:10.1126/science.1948051Born, R. T., & Bradley, D. C. (2005). STRUCTURE AND FUNCTION OF VISUAL AREA MT. Annual Review of Neuroscience, 28(1), 157-189. doi:10.1146/annurev.neuro.26.041002.131052Canli, T., Zhao, Z., Desmond, J. E., Kang, E., Gross, J., & Gabrieli, J. D. E. (2001). An fMRI study of personality influences on brain reactivity to emotional stimuli. Behavioral Neuroscience, 115(1), 33-42. doi:10.1037/0735-7044.115.1.33Clemente, M., Rodríguez, A., Rey, B., Rodríguez, A., Baños, R. M., Botella, C., … Ávila, C. (2011). Analyzing the Level of Presence While Navigating in a Virtual Environment during an fMRI Scan. Lecture Notes in Computer Science, 475-478. doi:10.1007/978-3-642-23768-3_61(Bud) Craig, A. D. (2009). How do you feel — now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10(1), 59-70. doi:10.1038/nrn2555Dilger, S., Straube, T., Mentzel, H.-J., Fitzek, C., Reichenbach, J. R., Hecht, H., … Miltner, W. H. R. (2003). Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neuroscience Letters, 348(1), 29-32. doi:10.1016/s0304-3940(03)00647-5Dodds, C. M., Morein-Zamir, S., & Robbins, T. W. (2010). Dissociating Inhibition, Attention, and Response Control in the Frontoparietal Network Using Functional Magnetic Resonance Imaging. Cerebral Cortex, 21(5), 1155-1165. doi:10.1093/cercor/bhq187Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601. doi:10.1038/33402Flach, J. M., & Holden, J. G. (1998). The Reality of Experience: Gibson’s Way. Presence: Teleoperators and Virtual Environments, 7(1), 90-95. doi:10.1162/105474698565550Friston, K. J., Holmes, A. P., Poline, J.-B., Grasby, P. J., Williams, S. C. R., Frackowiak, R. S. J., & Turner, R. (1995). Analysis of fMRI Time-Series Revisited. NeuroImage, 2(1), 45-53. doi:10.1006/nimg.1995.1007GEAKE, J., & HANSEN, P. (2005). Neural correlates of intelligence as revealed by fMRI of fluid analogies. NeuroImage, 26(2), 555-564. doi:10.1016/j.neuroimage.2005.01.035Haldane, M., Cunningham, G., Androutsos, C., & Frangou, S. (2008). Structural brain correlates of response inhibition in Bipolar Disorder I. Journal of Psychopharmacology, 22(2), 138-143. doi:10.1177/0269881107082955Hartley, T., Maguire, E. A., Spiers, H. J., & Burgess, N. (2003). The Well-Worn Route and the Path Less Traveled. Neuron, 37(5), 877-888. doi:10.1016/s0896-6273(03)00095-3Heeter, C. (1992). Being There: The Subjective Experience of Presence. Presence: Teleoperators and Virtual Environments, 1(2), 262-271. doi:10.1162/pres.1992.1.2.262De Castro, F. (2009). Wiring olfaction: the cellular and molecular mechanisms that guide the development of synaptic connections from the nose to the cortex. Frontiers in Neuroscience. doi:10.3389/neuro.22.004.2009Johnson, P. B., Ferraina, S., Bianchi, L., & Caminiti, R. (1996). Cortical Networks for Visual Reaching: Physiological and Anatomical Organization of Frontal and Parietal Lobe Arm Regions. Cerebral Cortex, 6(2), 102-119. doi:10.1093/cercor/6.2.102Karnath, H.-O. (2005). Awareness of the Functioning of One’s Own Limbs Mediated by the Insular Cortex? Journal of Neuroscience, 25(31), 7134-7138. doi:10.1523/jneurosci.1590-05.2005Koechlin, E. (2003). The Architecture of Cognitive Control in the Human Prefrontal Cortex. Science, 302(5648), 1181-1185. doi:10.1126/science.1088545Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: An fMRI analysis. Psychophysiology, 35(2), 199-210. doi:10.1017/s0048577298001991Le Bihan, D., Turner, R., Zeffiro, T. A., Cuenod, C. A., Jezzard, P., & Bonnerot, V. (1993). Activation of human primary visual cortex during visual recall: a magnetic resonance imaging study. Proceedings of the National Academy of Sciences, 90(24), 11802-11805. doi:10.1073/pnas.90.24.11802Lessiter, J., Freeman, J., Keogh, E., & Davidoff, J. (2001). A Cross-Media Presence Questionnaire: The ITC-Sense of Presence Inventory. Presence: Teleoperators and Virtual Environments, 10(3), 282-297. doi:10.1162/105474601300343612Loomis, J. M. (1992). Distal Attribution and Presence. Presence: Teleoperators and Virtual Environments, 1(1), 113-119. doi:10.1162/pres.1992.1.1.113Mellet, E., Laou, L., Petit, L., Zago, L., Mazoyer, B., & Tzourio-Mazoyer, N. (2009). Impact of the virtual reality on the neural representation of an environment. Human Brain Mapping, 31(7), 1065-1075. doi:10.1002/hbm.20917Mishkin, M., & Ungerleider, L. G. (1982). Contribution of striate inputs to the visuospatial functions of parieto-preoccipital cortex in monkeys. Behavioural Brain Research, 6(1), 57-77. doi:10.1016/0166-4328(82)90081-xMraz, R., Hong, J., Quintin, G., Staines, W. R., McIlroy, W. E., Zakzanis, K. K., & Graham, S. J. (2003). A Platform for Combining Virtual Reality Experiments with Functional Magnetic Resonance Imaging. CyberPsychology & Behavior, 6(4), 359-368. doi:10.1089/109493103322278736Ochsner, K. N., Bunge, S. A., Gross, J. J., & Gabrieli, J. D. E. (2002). Rethinking Feelings: An fMRI Study of the Cognitive Regulation of Emotion. Journal of Cognitive Neuroscience, 14(8), 1215-1229. doi:10.1162/089892902760807212Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97-113. doi:10.1016/0028-3932(71)90067-4Owen, A. M., Downes, J. J., Sahakian, B. J., Polkey, C. E., & Robbins, T. W. (1990). Planning and spatial working memory following frontal lobe lesions in man. Neuropsychologia, 28(10), 1021-1034. doi:10.1016/0028-3932(90)90137-dPerani, D., Fazio, F., Borghese, N. A., Tettamanti, M., Ferrari, S., Decety, J., & Gilardi, M. C. (2001). Different Brain Correlates for Watching Real and Virtual Hand Actions. NeuroImage, 14(3), 749-758. doi:10.1006/nimg.2001.0872Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133(1), 44-54. doi:10.1007/s002210000399Pine, D. S., Grun, J., Maguire, E. A., Burgess, N., Zarahn, E., Koda, V., … Bilder, R. M. (2002). Neurodevelopmental Aspects of Spatial Navigation: A Virtual Reality fMRI Study. NeuroImage, 15(2), 396-406. doi:10.1006/nimg.2001.0988Riva, G., Waterworth, J. A., Waterworth, E. L., & Mantovani, F. (2011). From intention to action: The role of presence. New Ideas in Psychology, 29(1), 24-37. doi:10.1016/j.newideapsych.2009.11.002Rey, B., Alcañiz, M., Tembl, J., & Parkhutik, V. (2009). Brain activity and presence: a preliminary study in different immersive conditions using transcranial Doppler monitoring. Virtual Reality, 14(1), 55-65. doi:10.1007/s10055-009-0141-2Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews Neuroscience, 6(4), 332-339. doi:10.1038/nrn1651Scheibe, C., Wartenburger, I., Wüstenberg, T., Kathmann, N., Villringer, A., & Heekeren, H. R. (2006). Neural correlates of the interaction between transient and sustained processes: A mixed blocked/event-related fMRI study. Human Brain Mapping, 27(7), 545-551. doi:10.1002/hbm.20199Schuemie, M. J., van der Straaten, P., Krijn, M., & van der Mast, C. A. P. G. (2001). Research on Presence in Virtual Reality: A Survey. CyberPsychology & Behavior, 4(2), 183-201. doi:10.1089/109493101300117884Smith, S. M. (2004). Overview of fMRI analysis. The British Journal of Radiology, 77(suppl_2), S167-S175. doi:10.1259/bjr/33553595Usoh, M., Catena, E., Arman, S., & Slater, M. (2000). Using Presence Questionnaires in Reality. Presence: Teleoperators and Virtual Environments, 9(5), 497-503. doi:10.1162/105474600566989Vanni, S., Tanskanen, T., Seppa, M., Uutela, K., & Hari, R. (2001). Coinciding early activation of the human primary visual cortex and anteromedial cuneus. Proceedings of the National Academy of Sciences, 98(5), 2776-2780. doi:10.1073/pnas.041600898Wolf, U., Rapoport, M. J., & Schweizer, T. A. (2009). Evaluating the Affective Component of the Cerebellar Cognitive Affective Syndrome. Journal of Neuropsychiatry, 21(3), 245-253. doi:10.1176/appi.neuropsych.21.3.245Zahorik, P., & Jenison, R. L. (1998). Presence as Being-in-the-World. Presence: Teleoperators and Virtual Environments, 7(1), 78-89. doi:10.1162/10547469856554
The Neural Substrate of Reward Anticipation in Health: A Meta-Analysis of fMRI Findings in the Monetary Incentive Delay Task
The monetary incentive delay task breaks down reward processing into discrete stages for fMRI analysis. Here we look at anticipation of monetary gain and loss contrasted with neutral anticipation. We meta-analysed data from 15 original whole-brain group maps (n = 346) and report extensive areas of relative activation and deactivation throughout the whole brain. For both anticipation of gain and loss we report robust activation of the striatum, activation of key nodes of the putative salience network, including anterior cingulate and anterior insula, and more complex patterns of activation and deactivation in the central executive and default networks. On between-group comparison, we found significantly greater relative deactivation in the left inferior frontal gyrus associated with incentive valence. This meta-analysis provides a robust whole-brain map of a reward anticipation network in the healthy human brain
The Neural Substrate of Reward Anticipation in Health : A Meta-Analysis of fMRI Findings in the Monetary Incentive Delay Task
The monetary incentive delay task breaks down reward processing into discrete stages for fMRI analysis. Here we look at anticipation of monetary gain and loss contrasted with neutral anticipation. We meta-analysed data from 15 original whole-brain group maps (n = 346) and report extensive areas of relative activation and deactivation throughout the whole brain. For both anticipation of gain and loss we report robust activation of the striatum, activation of key nodes of the putative salience network, including anterior cingulate and anterior insula, and more complex patterns of activation and deactivation in the central executive and default networks. On between-group comparison, we found significantly greater relative deactivation in the left inferior frontal gyrus associated with incentive valence. This meta-analysis provides a robust whole-brain map of a reward anticipation network in the healthy human brain