809 research outputs found

    Orolingual angioedema after thrombolysis is not associated with insular cortex ischemia on pre-thrombolysis CT

    Get PDF
    Orolingual angioedema (OA) is a well known early complication of treatment with alteplase in ischemic stroke patients. Our aim was to study risk factors for OA in these patients, namely insular cortex ischemia

    Protein transport into peroxisomes: Knowns and unknowns

    Get PDF
    Peroxisomal matrix proteins are synthesized on cytosolic ribosomes and rapidly transported into the organelle by a complex machinery. The data gathered in recent years suggest that this machinery operates through a syringe-like mechanism, in which the shuttling receptor PEX5 - the “plunger” - pushes a newly synthesized protein all the way through a peroxisomal transmembrane protein complex - the “barrel” - into the matrix of the organelle. Notably, insertion of cargo-loaded receptor into the “barrel” is an ATP-independent process, whereas extraction of the receptor back into the cytosol requires its monoubiquitination and the action of ATP-dependent mechanoenzymes. Here, we review the main data behind this model.We would like to thank Dr. Marc Fransen (KU Leuven) for his critical reading of the manuscript. This work was financed by FEDER - Fundo Europeu de Desenvolvimento Regional, funds through the COMPETE 2020 - Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT - Fundação para a Ciência e a Tecnologia/Ministerio da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and “Themolecular mechanisms of peroxisome biogenesis” (PTDC/BEX-BCM/2311/2014), and through Norte 2020–Programa Operacional Regional do Norte, under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S (NORTE-01-0145-FEDER-000008).” T.F., T.A.R., A.F.D., A.B.B., and D.B. were supported by Fundação para a Ciência e a Tecnologia, Programa Operacional Potencial Humano do QREN and Fundo Social Europeu

    The peroxisomal matrix protein translocon is a large cavity-forming protein assembly into which PEX5 protein enters to release its cargo

    Get PDF
    A remarkable property of the machinery for import of peroxisomal matrix proteins is that it can accept already folded proteins as substrates. This import involves binding of newly synthesized proteins by cytosolic peroxisomal biogenesis factor 5 (PEX5) followed by insertion of the PEX5– cargo complex into the peroxisomal membrane at the docking/translocation module (DTM). However, how these processes occur remains largely unknown. Here, we used truncated PEX5 molecules to probe the DTM architecture. We found that the DTM can accommodate a larger number of truncated PEX5 molecules comprising amino acid residues 1–197 than full-length PEX5 molecules. A shorter PEX5 version (PEX5(1–125)) still interacted correctly with the DTM; however, this species was largely accessible to exoge-nously added proteinase K, suggesting that this protease can access the DTM occupied by a small PEX5 protein. Interestingly, the PEX5(1–125)–DTM interaction was inhibited by a polypeptide comprising PEX5 residues 138 – 639. Apparently, the DTM can recruit soluble PEX5 through interactions with different PEX5 domains, suggesting that the PEX5–DTM interactions are to some degree fuzzy. Finally, we found that the interaction between PEX5 and PEX14, a major DTM component, is stable at pH 11.5. Thus, there is no reason to assume that the hitherto intriguing resistance of DTM-bound PEX5 to alkaline extraction reflects its direct contact with the peroxisomal lipid bilayer. Collectively, these results suggest that the DTM is best described as a large cavity-forming protein assembly into which cytosolic PEX5 can enter to release its cargo.This work was supported in part by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020-Operational Pro-gramme for Competitiveness and Internationalization (POCI), Portugal 2020 and by Portuguese funds through Fundação para a Ciência e a Tec-nologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (Grant POCI-01-0145-FEDER-007274) and “The molecular mechanisms of peroxisome biogenesis” (Grant PTDC/BEX-BCM/2311/2014) and through Norte 2020-Programa Operacional Regional do Norte under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S” (Grant NORTE-01-0145-FEDER-000008). The authors declare that they have no conflicts of interest with the contents of this article

    Expression and clinical relevance of SOX9 in gastric cancer

    Get PDF
    Gastric cancer is one of the most frequent tumours and the third leading cause of cancer-related death worldwide. The investigation of new biomarkers that can predict patient outcome more accurately and allow better treatment and follow-up decisions is of crucial importance. SOX9 (sex-determining region Y (SRY)-box 9) is a regulator of cell fate decisions in embryogenesis and adulthood. Here, we sought to ascertain the relevance of SOX9 transcription factor as a prognostic marker in gastric cancer. SOX9 expression was analyzed by immunohistochemistry in 333 gastric adenocarcinoma cases, and its association with clinicopathological and follow-up data was evaluated. SOX9 nuclear expression was absent in 17% of gastric cancer cases and predicted worse disease-free survival (P = 0 03). SOX9 expression was associated with lower risk of relapse in Cox univariable analysis (HR = 0 58; 95% CI = 0 35-0.97; P = 0 04). The prognostic value of SOX9 was more pronounced in tumours with expansive growth (P = 0 01) or with venous invasion (P = 0 02). Two validation cohorts from the Cancer Genome Atlas (TCGA) and the Asian Cancer Research Group (ACRG) confirmed that low SOX9 expression was significantly associated with poor patient outcome. In conclusion, we have identified SOX9 as a biomarker of disease relapse in gastric cancer patients. Further experiments are needed to elucidate its biological relevance at the cellular level.The authors wish to acknowledge the tumour and tissue bank at Hospital de São João for providing all the means to collect the human tissue samples included in this study. This work was supported by FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). This work was also financed by the projects NORTE-01-0145-FEDER-000003 (DOCnet) and NORTE-07-0124-FEDER-000029 supported by Norte Portugal Regional Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). BP and RB acknowledge FCT for financial support (grants SFRH/BPD/109794/2015 and SFRH/BPD/68276/2010, respectively)

    Peroxisomal monoubiquitinated PEX5 interacts with the AAA ATPases PEX1 and PEX6 and is unfolded during its dislocation into the cytosol

    Get PDF
    PEX1 and PEX6 are two members of the ATPases associated with diverse cellular activities (AAA) family and the core components of the receptor export module of the peroxisomal matrix protein import machinery. Their role is to extract monoubiquitinated PEX5, the peroxisomal protein-shuttling receptor, from the peroxisomal membrane docking/translocation module (DTM), so that a new cycle of protein transportation can start. Recent data have shown that PEX1 and PEX6 form a heterohexameric complex that unfolds substrates by processive threading. However, whether the natural substrate of the PEX1-PEX6 complex is monoubiquitinated PEX5 (Ub-PEX5) itself or some Ub-PEX5-interacting component(s) of the DTM remains unknown. In this work, we used an established cell-free in vitro system coupled with photoaffinity cross-linking and protein PEGylation assays to address this problem. We provide evidence suggesting that DTM-embedded Ub-PEX5 interacts directly with both PEX1 and PEX6 through its ubiquitin moiety and that the PEX5 polypeptide chain is globally unfolded during the ATP-dependent extraction event. These findings strongly suggest that DTM-embedded Ub-PEX5 is a bona fide substrate of the PEX1-PEX6 complex.The authors thank Britta Moellers (Ruhr-Universität Bochum, Germany) for providing plasmids and recombinant protein for the generation of the anti-PEX6 antibody. This work was funded by FEDER (Fundo Europeu de Desenvolvimento Regional), through COMPETE 2020 –Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Inovação in the framework of the projects “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274) and “The molecular mechanisms of peroxisome biogenesis” (PTDC/BEX-BCM/2311/2014), and through Norte 2020 – Programa Operacional Regional do Norte, under the application of the “Porto Neurosciences and Neurologic Disease Research Initiative at i3S” (NORTE-01-0145-FEDER-000008). A.G.P, T.F., D.B., A.F.D., A.B.B. and T.A.R. are supported by Fundação para a Ciência e Tecnologia, Programa Operacional Potencial Humano do QREN and Fundo Social Europeu
    corecore