111 research outputs found
Improved synthesis of phytanyl α-D-cellobiosyldiphosphate as substrate for α-D-mannosyltransferase
Polyisoprenyl-pyrophosphate-linked cellobiose is the natural acceptor of the α-1,3- mannosyltransferase AceA from Acetobacter xylinum, which transfers mannose from GDPmannose during the assembly of the heptasaccharide repeat unit of the exopolysaccharide acetan. Phytanyl α-D-cellobiosyldiphosphate 4 has been previously synthesized as an analogue acceptor by condensation of hepta-O-acetyl-α-D-cellobiosylphosphate 1 with phytanylphosphate 2, but the procedure was briefly described. We report here a modified detailed synthesis of 4. The complete NMR characterization of 4 is provided and also a selection of NMR signals of all the intermediate compounds which facilitate monitoring the synthesis.Fil: Barrios, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; ArgentinaFil: Ielpi, Luis. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Marino, Carla. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Orgánica; Argentin
II Jornadas Universitarias de Prótesis Dental : odontoolimpiadas
Memoria ID-0009. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2014-2015
Análisis de los Posibles Riesgos Psicosociales y Biomecánicos que se Presentan en la Modalidad del Teletrabajo en una Compañía Aseguradora
Realizar un análisis que identifique los posibles riesgos psicosociales y biomecánicos que afectan la seguridad y salud de los teletrabajadores, el ambiente laboral y como consecuencia el desempeño, cumplimiento de metas y objetivos misionales de la organización.Durante las últimas décadas el teletrabajo se ha ido incorporando a nivel global como una nueva modalidad de desarrollar y planificar el trabajo al interior de las compañías partiendo desde el avance tecnológico, la velocidad de las redes de comunicación y la difusión comercial en internet. Pero esta modalidad laboral había sido poco explorada en Colombia. En el año 2020 a raíz de la pandemia declarada por la OMS en el mes marzo, se hizo necesaria la implementación del trabajo en casa, por el tiempo que dure la emergencia sanitaria. El análisis de los beneficios de esta modalidad de trabajo lleva a la compañía a iniciar unas pruebas piloto y gradual para la implementación del teletrabajo. Esta situación evidencia la necesidad de investigar los riesgos en salud y seguridad que podrá generar este cambio de modalidad laboral. Por lo tanto, la presente investigación se orienta en realizar un análisis que identifique los posibles riesgos psicosociales y biomecánicos que afectan la seguridad y salud de los teletrabajadoresDuring the last decades teleworking has been incorporated globally as a new way of developing and planning work within companies based on technological progress, the speed of communication networks and commercial dissemination on the Internet. But this work modality had been little explored in Colombia. In 2020, as a result of the pandemic declared by the WHO in March, it became necessary to implement work at home, for the duration of the health emergency. The analysis of the benefits of this work modality leads the company to initiate pilot and gradual tests for the implementation of teleworking. This situation evidences the need to investigate the health and safety risks that this change in work modality may generate Therefore, this research is oriented to carry out an analysis that identifies the possible psychosocial and biomechanical risks that affect the safety and health of teleworker
Análisis de los Posibles Riesgos Psicosociales y Biomecánicos que se Presentan en la Modalidad del Teletrabajo en una Compañía Aseguradora
Realizar un análisis que identifique los posibles riesgos psicosociales y biomecánicos que afectan la seguridad y salud de los teletrabajadores, el ambiente laboral y como consecuencia el desempeño, cumplimiento de metas y objetivos misionales de la organización.Durante las últimas décadas el teletrabajo se ha ido incorporando a nivel global como una nueva modalidad de desarrollar y planificar el trabajo al interior de las compañías partiendo desde el avance tecnológico, la velocidad de las redes de comunicación y la difusión comercial en internet. Pero esta modalidad laboral había sido poco explorada en Colombia. En el año 2020 a raíz de la pandemia declarada por la OMS en el mes marzo, se hizo necesaria la implementación del trabajo en casa, por el tiempo que dure la emergencia sanitaria. El análisis de los beneficios de esta modalidad de trabajo lleva a la compañía a iniciar unas pruebas piloto y gradual para la implementación del teletrabajo. Esta situación evidencia la necesidad de investigar los riesgos en salud y seguridad que podrá generar este cambio de modalidad laboral. Por lo tanto, la presente investigación se orienta en realizar un análisis que identifique los posibles riesgos psicosociales y biomecánicos que afectan la seguridad y salud de los teletrabajadoresDuring the last decades teleworking has been incorporated globally as a new way of developing and planning work within companies based on technological progress, the speed of communication networks and commercial dissemination on the Internet. But this work modality had been little explored in Colombia. In 2020, as a result of the pandemic declared by the WHO in March, it became necessary to implement work at home, for the duration of the health emergency. The analysis of the benefits of this work modality leads the company to initiate pilot and gradual tests for the implementation of teleworking. This situation evidences the need to investigate the health and safety risks that this change in work modality may generate Therefore, this research is oriented to carry out an analysis that identifies the possible psychosocial and biomechanical risks that affect the safety and health of teleworker
Dopaminergic inhibition of human neutrophils is exerted through D1-like receptors and affected by bacterial infection
Dopamine (DA) affects immune functions in healthy subjects (HS) and during disease by acting on D1-like (D1 and D5) and D2-like (D2, D3 and D4) dopaminergic receptors (DR); however, its effects on human polymorphonuclear leukocytes (PMN) are still poorly defined. We investigated DR expression in human PMN and the ability of DA to affect cell migration and reactive oxygen species (ROS) production. Experiments were performed on cells from HS and from patients (Pts) with bacterial infections as well, during the acute phase and after recovery. Some experiments were also performed in mice knockout (KO) for the DRD5 gene. PMN from HS express both D1-like and D2-like DR, and exposure to DA results in inhibition of activation-induced morphological changes, migration and ROS production which depend on the activation of D1-like DR. In agreement with these findings, DA inhibited migration of PMN obtained from wild-type mice, but not from DRD5KO mice. In Pts with bacterial infections, during the febrile phase D1-like DRD5 on PMN were downregulated and DA failed to affect PMN migration. Both D1-like DRD5 expression and DA-induced inhibition of PMN migration were however restored after recovery. Dopaminergic inhibition of human PMN is a novel mechanism which is likely to play a key role in the regulation of innate immunity. Evidence obtained in Pts with bacterial infections provides novel clues for the therapeutic modulation of PMN during infectious disease
Creación de una web del Grupo de Investigación: avances en Salud Oral
Memoria ID-0135. Ayudas de la Universidad de Salamanca para la innovación docente, curso 2015-2016
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE
This document presents the concept and physics case for a magnetized gaseous argon-based detector system (ND-GAr) for the Deep Underground Neutrino Experiment (DUNE) Near Detector. This detector system is required in order for DUNE to reach its full physics potential in the measurement of CP violation and in delivering precision measurements of oscillation parameters. In addition to its critical role in the long-baseline oscillation program, ND-GAr will extend the overall physics program of DUNE. The LBNF high-intensity proton beam will provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to discover new particles and search for new interactions and symmetries beyond those predicted in the Standard Model
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation long-baseline neutrino oscillation experiment with a primary physics goal of observing neutrino and antineutrino oscillation patterns to precisely measure the parameters governing long-baseline neutrino oscillation in a single experiment, and to test the three-flavor paradigm. DUNE's design has been developed by a large, international collaboration of scientists and engineers to have unique capability to measure neutrino oscillation as a function of energy in a broadband beam, to resolve degeneracy among oscillation parameters, and to control systematic uncertainty using the exquisite imaging capability of massive LArTPC far detector modules and an argon-based near detector. DUNE's neutrino oscillation measurements will unambiguously resolve the neutrino mass ordering and provide the sensitivity to discover CP violation in neutrinos for a wide range of possible values of δCP. DUNE is also uniquely sensitive to electron neutrinos from a galactic supernova burst, and to a broad range of physics beyond the Standard Model (BSM), including nucleon decays. DUNE is anticipated to begin collecting physics data with Phase I, an initial experiment configuration consisting of two far detector modules and a minimal suite of near detector components, with a 1.2 MW proton beam. To realize its extensive, world-leading physics potential requires the full scope of DUNE be completed in Phase II. The three Phase II upgrades are all necessary to achieve DUNE's physics goals: (1) addition of far detector modules three and four for a total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary muon spectrometer with a magnetized, high-pressure gaseous argon TPC and calorimeter
A Gaseous Argon-Based Near Detector to Enhance the Physics Capabilities of DUNE
This document presents the concept and physics case for a magnetized gaseous
argon-based detector system (ND-GAr) for the Deep Underground Neutrino
Experiment (DUNE) Near Detector. This detector system is required in order for
DUNE to reach its full physics potential in the measurement of CP violation and
in delivering precision measurements of oscillation parameters. In addition to
its critical role in the long-baseline oscillation program, ND-GAr will extend
the overall physics program of DUNE. The LBNF high-intensity proton beam will
provide a large flux of neutrinos that is sampled by ND-GAr, enabling DUNE to
discover new particles and search for new interactions and symmetries beyond
those predicted in the Standard Model.Comment: Contribution to Snowmass 202
Snowmass Neutrino Frontier: DUNE Physics Summary
The Deep Underground Neutrino Experiment (DUNE) is a next-generation
long-baseline neutrino oscillation experiment with a primary physics goal of
observing neutrino and antineutrino oscillation patterns to precisely measure
the parameters governing long-baseline neutrino oscillation in a single
experiment, and to test the three-flavor paradigm. DUNE's design has been
developed by a large, international collaboration of scientists and engineers
to have unique capability to measure neutrino oscillation as a function of
energy in a broadband beam, to resolve degeneracy among oscillation parameters,
and to control systematic uncertainty using the exquisite imaging capability of
massive LArTPC far detector modules and an argon-based near detector. DUNE's
neutrino oscillation measurements will unambiguously resolve the neutrino mass
ordering and provide the sensitivity to discover CP violation in neutrinos for
a wide range of possible values of . DUNE is also uniquely
sensitive to electron neutrinos from a galactic supernova burst, and to a broad
range of physics beyond the Standard Model (BSM), including nucleon decays.
DUNE is anticipated to begin collecting physics data with Phase I, an initial
experiment configuration consisting of two far detector modules and a minimal
suite of near detector components, with a 1.2 MW proton beam. To realize its
extensive, world-leading physics potential requires the full scope of DUNE be
completed in Phase II. The three Phase II upgrades are all necessary to achieve
DUNE's physics goals: (1) addition of far detector modules three and four for a
total FD fiducial mass of at least 40 kt, (2) upgrade of the proton beam power
from 1.2 MW to 2.4 MW, and (3) replacement of the near detector's temporary
muon spectrometer with a magnetized, high-pressure gaseous argon TPC and
calorimeter.Comment: Contribution to Snowmass 202
- …