1,506 research outputs found

    Strong Clustering of Lyman Break Galaxies around Luminous Quasars at z~4

    Get PDF
    In the standard picture of structure formation, the first massive galaxies are expected to form at the highest peaks of the density field, which constitute the cores of massive proto-clusters. Luminous quasars (QSOs) at z~4 are the most strongly clustered population known, and should thus reside in massive dark matter halos surrounded by large overdensities of galaxies, implying a strong QSO-galaxy cross-correlation function. We observed six z~4 QSO fields with VLT/FORS exploiting a novel set of narrow band filters custom designed to select Lyman Break Galaxies (LBGs) in a thin redshift slice of Delta_z~0.3, mitigating the projection effects that have limited the sensitivity of previous searches for galaxies around z>~4 QSOs. We find that LBGs are strongly clustered around QSOs, and present the first measurement of the QSO-LBG cross-correlation function at z~4, on scales of 0.1<~R<~9 Mpc/h (comoving). Assuming a power law form for the cross-correlation function xi=(r/r0_QG)^gamma, we measure r0_QG=8.83^{+1.39}_{-1.51} Mpc/h for a fixed slope of gamma=2.0. This result is in agreement with the expected cross-correlation length deduced from measurements of the QSO and LBG auto-correlation function, and assuming a linear bias model. We also measure a strong auto-correlation of LBGs in our QSO fields finding r0_GG=21.59^{+1.72}_{-1.69} Mpc/h for a fixed slope of gamma=1.5, which is ~4 times larger than the LBG auto-correlation length in random fields, providing further evidence that QSOs reside in overdensities of LBGs. Our results qualitatively support a picture where luminous QSOs inhabit exceptionally massive (M_halo>10^12 M_sun) dark matter halos at z~4.Comment: 25 pages, 22 figures, submitted to the Ap

    Clustering of Lyman-alpha Emitters Around Quasars at z∼4z\sim4

    Full text link
    The strong observed clustering of z>3.5z>3.5 quasars indicates they are hosted by massive (Mhalo≳1012 h−1 M⊙M_{\rm{halo}}\gtrsim10^{12}\,h^{-1}\,\rm{M_{\odot}}) dark matter halos. Assuming quasars and galaxies trace the same large-scale structures, this should also manifest as strong clustering of galaxies around quasars. Previous work on high-redshift quasar environments, mostly focused at z>5z>5, have failed to find convincing evidence for these overdensities. Here we conduct a survey for Lyman alpha emitters (LAEs) in the environs of 17 quasars at z∼4z\sim4 probing scales of R≲7 h−1 MpcR\lesssim7\,h^{-1}\,{\rm{Mpc}}. We measure an average LAE overdensity around quasars of 1.4 for our full sample, which we quantify by fitting the quasar-LAE cross-correlation function. We find consistency with a power-law shape with correlation length of r0QG=2.78−1.05+1.16 h−1 cMpcr^{QG}_{0}=2.78^{+1.16}_{-1.05}\,h^{-1}\,{\rm{cMpc}} for a fixed slope of γ=1.8\gamma=1.8. We also measure the LAE auto-correlation length and find r0GG=9.12−1.31+1.32 h−1r^{GG}_{0}=9.12^{+1.32}_{-1.31}\,h^{-1}\,cMpc (γ=1.8\gamma=1.8), which is 3.33.3 times higher than the value measured in blank fields. Taken together our results clearly indicate that LAEs are significantly clustered around z∼4z\sim4 quasars. We compare the observed clustering with the expectation from a deterministic bias model, whereby LAEs and quasars probe the same underlying dark matter overdensities, and find that our measurements fall short of the predicted overdensities by a factor of 2.1. We discuss possible explanations for this discrepancy including large-scale quenching or the presence of excess dust in galaxies near quasars. Finally, the large cosmic variance from field-to-field observed in our sample (10/17 fields are actually underdense) cautions one from over-interpreting studies of z∼6z\sim6 quasar environments based on a single or handful of quasar fields.Comment: 19 pages, 12 figures, submitted to the Ap

    Squark Loop Correction to W^{+-} H^{-+} Associated Hadroproduction

    Full text link
    We study the squark loop correction to W^{+-} H^{-+} associated hadroproduction via gluon-gluon fusion within the minimal supersymmetric extension of the standard model. We list full analytic results and quantitatively analyze the resulting shift in the cross section at the CERN Large Hadron Collider assuming a supergravity-inspired scenario.Comment: 13 pages (Latex), 5 figures (Postscript

    The MSSM prediction for W+/- H-/+ production by gluon fusion

    Full text link
    We discuss the associated W+/- H-/+ production in p p collision for the Large Hadron Collider. A complete one-loop calculation of the loop-induced subprocess g g -> W+/- H-/+ is presented in the framework of the Minimal Supersymmetric Standard Model (MSSM), and the possible enhancement of the hadronic cross section is investigated under the constraint from the squark direct-search results and the low-energy precision data. Because of the large destructive interplay in the quark-loop contributions between triangle-type and box-type diagrams, the squark-loop contributions turn out to be comparable with the quark-loop ones. In particular, the hadronic cross section via gluon fusion can be extensively enhanced by squark-pair threshold effects in the box-type diagrams, so that it can be as large as the hadronic cross section via the b b-bar -> W+/- H-/+ subprocess which appears at tree level.Comment: 35 pages, 7 figures, version to appear in Physical Review
    • …
    corecore