105 research outputs found

    KAJI AWAL TURBIN AIR DARRIEUS 3 BLADE HYDROFOIL NACA 0018 PADA VARIASI BILANGAN REYNOLD

    Get PDF
    Kebutuhan akan energi dari tahun ke tahun semakin meningkat sementara cadangan energi yang berasal dari fossil seperti minyak bumi dan batu bara semakin menipis. Hal ini akan menyebabkan terjadinya krisis energi karena sumber energi tersebut adalah sumber energi yang tak terbarukan. Untuk mengatasi permasalahan energi ini perlu dicari sumber-sumber energi baru yang terbarukan, sehingga tidak akan terjadi krisis energi di masa yang akan datang. Indonesia memiliki lautan yang sangat luas, sehingga potensi arus lautnya dapat dimanfaatkan sebagai energi alternatif. Penelitian ini adalah melakukan pengujian terhadap turbin Darrieus. Turbin ini memiliki diameter 20 cm dan tinggi 20 cm, blade yang digunakan adalah hydrofoil NACA 0018 dengan panjang chord 6,5 cm. Pengujian dilakukan pada sebuah saluran uji yang memiliki penampang persegi panjang 30 x 32 cm dengan variasi bilangan Reynold 6370, 11980 dan 17615 untuk mencari daya dan efisiensi yang dihasilkan turbin tersebut. Dari hasil pengujian, daya yang dihasilkan turbin Darrieus tersebut pada bilangan Reynold 6370, 11980 dan 17615 berturut-turut adalah 0,00339 Watt, 0,009 Watt dan 0,018 Watt sedangkan efisiensinya 21,95 %, 7,37 % dan 4,52 %. Kata kunci: Turbin Darrieus, NACA 0018, bilangan Reynold dan efisiens

    Therapeutic Use of Bacteriophage and Antibiotic Formulations for the Treatment of Antibiotic Resistant Acinetobacter Baumannii

    Get PDF
    Gemstone Team LYTICWidespread use of antibiotics has enriched global bacteria populations for strains possessing antibiotic resistance (AR) genes. Proliferation of AR genes and mechanisms have resulted in numerous multidrug resistant (MDR) infections for which there are no effective treatments. Acinetobacter baumannii is a major cause of hospital acquired (nosocomial) infections and is associated with outbreaks of MDR infections. Virulent bacteriophages (phages) present a way to remedy bacterial infections, while also having built-in mechanisms to circumvent resistance. This proposed study aims to develop a phage therapeutic targeting antibiotic resistant A. baumannii. The phages chosen for the final formulation exhibited high bactericidal activity and were able to infect several strains of A. baumannii from a provided library. Additionally, the phage-antibiotic synergy (PAS) effect was investigated in formulations with sub-lethal doses of ampicillin and chloramphenicol. The effectiveness of the phage therapeutic at different multiplicity of infections (MOI) and antibiotic concentrations were assessed relative to standard antibiotic doses. Well-plate studies suggest that higher MOI and antibiotic concentrations resulted in the greatest initial bactericidal effects, longest time to develop resistance, and lowest overall bacteria concentration. In future formulation studies, we would like to expand and optimize the current phage-antibiotic formulation and explore cocktail effects, whereby the formulation consists of a mixture of different phages that increases selective pressure

    Characterisation and outcomes of patients referred to a regional cancer of unknown primary team: a 10-year analysis

    Get PDF
    BACKGROUND: In the United Kingdom, national guidance published in 2010 recommended the establishment of specialist teams to improve clinical pathways for patients presenting with malignancies of undefined primary origin (MUO) and cancer of unknown primary (CUP). This study sought to define outcomes of patients referred to a regional MUO/CUP service. METHODS: Data were collected prospectively on all patients (n = 1225) referred to a regional CUP team over a 10-year period. Patient demographics, clinical, pathological and outcome data were recorded and analysed. RESULTS: Confirmed CUP (cCUP) was diagnosed in 25% of patients. A primary metastatic cancer was identified in 36%, 5% were diagnosed with provisional CUP (pCUP), 27% retained the diagnosis of MUO and in 8% a non-cancer diagnosis was made. Median survival was low in all patients with a final malignant diagnosis: primary identified 9.0 months, cCUP 4.0 months, pCUP 1.5 months and MUO 1.5 months. CONCLUSIONS: Patients presenting with MUO have poor outcomes irrespective of the final diagnosis. These patients need a patient-centred, streamlined, rapid diagnostic pathway. There are clear benefits to primary and secondary care teams having access to a dedicated, multidisciplinary MUO/CUP service, with clinical nurse specialists supporting the patients, to help facilitate this pathway and ensure early oncology review

    Streptomyces endophytes promote host health and enhance growth across plant species

    Get PDF
    Streptomyces bacteria are ubiquitous in soils and are well-known for producing secondary metabolites, including antimicrobials. Increasingly, they are being isolated from plant roots and several studies have shown they are specifically recruited to the rhizosphere and the endosphere of the model plant Arabidopsis thaliana Here we test the hypothesis that Streptomyces bacteria have a beneficial effect on A. thaliana growth and could potentially be used as plant probiotics. To do this, we selectively isolated streptomycetes from surface washed A. thaliana roots and generated high quality genome sequences for five strains which we named L2, M2, M3, N1 and N2. Re-infection of A. thaliana plants with L2, M2 and M3 significantly increased plant biomass individually and in combination whereas N1 and N2 had a negative effect on plant growth, likely due to their production of polyene natural products which can bind to phytosterols and reduce plant growth. N2 exhibits broad spectrum antimicrobial activity and makes filipin-like polyenes, including 14-hydroxyisochainin which inhibits the Take-all fungus, Gaeumannomyces graminis var. tritici N2 antifungal activity as a whole was upregulated ∼2-fold in response to indole-3-acetic acid (IAA) suggesting a possible role during competition in the rhizosphere. Furthermore, coating wheat seeds with N2 spores protected wheat seedlings against Take-all disease. We conclude that at least some soil dwelling streptomycetes confer growth promoting benefits on A. thaliana while others might be exploited to protect crops against disease.Importance. We must reduce reliance on agrochemicals and there is increasing interest in using bacterial strains to promote plant growth and protect against disease. Our study follows up reports that Arabidopsis thaliana specifically recruits Streptomyces bacteria to its roots. We test the hypothesis that they offer benefits to their A. thaliana hosts and that strains isolated from these plants might be used as probiotics. We isolated Streptomyces strains from A. thaliana roots and genome sequenced five phylogenetically distinct strains. Genome mining and bioassays indicated that all five have plant growth promoting properties, including production of IAA, siderophores and ACC deaminase. Three strains significantly increased A. thaliana growth in vitro and in combination in soil. Another produces potent filipin-like antifungals and protected germinating wheat seeds against the fungal pathogen Gaeumannomyces graminis var. tritici (wheat Take-all fungus). We conclude that introducing Streptomyces strains into the root microbiome provides significant benefits to plants

    Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome

    Get PDF
    Streptomyces species are saprophytic soil bacteria that produce a diverse array of specialized metabolites, including half of all known antibiotics. They are also rhizobacteria and plant endophytes that can promote plant growth and protect against disease. Several studies have shown that streptomycetes are enriched in the rhizosphere and endosphere of the model plant Arabidopsis thaliana. Here, we set out to test the hypothesis that they are attracted to plant roots by root exudates, and specifically by the plant phytohormone salicylate, which they might use as a nutrient source. We confirmed a previously published report that salicylate over-producing cpr5 plants are colonized more readily by streptomycetes but found that salicylate-deficient sid2-2 and pad4 plants had the same levels of root colonization by Streptomyces bacteria as the wild-type plants. We then tested eight genome sequenced Streptomyces endophyte strains in vitro and found that none were attracted to or could grow on salicylate as a sole carbon source. We next used 13CO2 DNA stable isotope probing to test whether Streptomyces species can feed off a wider range of plant metabolites but found that Streptomyces bacteria were outcompeted by faster growing proteobacteria and did not incorporate photosynthetically fixed carbon into their DNA. We conclude that, given their saprotrophic nature and under conditions of high competition, streptomycetes most likely feed on more complex organic material shed by growing plant roots. Understanding the factors that impact the competitiveness of strains in the plant root microbiome could have consequences for the effective application of biocontrol strains

    Lubrication regime of the contact between fat and bone in bovine tissue

    Get PDF
    Fat pads are masses of encapsulated adipose tissue located throughout the human body. Whilst a number of studies describe these soft tissues anatomically little is known about their biomechanics, and surgeons may excise them arthroscopically if they hinder visual inspection of the joint or bursa. By measuring the coefficient of friction between, and performing Sommerfeld analysis of, the surfaces approximating the in vivo conjuncture, this contact has been shown to have a coefficient of friction of the order of 0.01. The system appears to be lubricated hydrodynamically, thus possibly promoting low levels of wear. It is suggested that one of the functions of fat pads associated with subtendinous bursae and synovial joints is to generate a hydrodynamic lubricating layer between the opposing surfaces

    Competition-based screening helps to secure the evolutionary stability of a defensive microbiome

    Get PDF
    Background: The cuticular microbiomes of Acromyrmex leaf-cutting ants pose a conundrum in microbiome biology because they are freely colonisable, and yet the prevalence of the vertically transmitted bacteria Pseudonocardia, which contributes to the control of Escovopsis fungus garden disease, is never compromised by the secondary acquisition of other bacterial strains. Game theory suggests that competition-based screening can allow the selective recruitment of antibiotic-producing bacteria from the environment, by providing abundant resources to foment interference competition between bacterial species and by using Pseudonocardia to bias the outcome of competition in favour of antibiotic producers. Results: Here, we use RNA-stable isotope probing (RNA-SIP) to confirm that Acromyrmex ants can maintain a range of microbial symbionts on their cuticle by supplying public resources. We then used RNA sequencing, bioassays, and competition experiments to show that vertically transmitted Pseudonocardia strains produce antibacterials that differentially reduce the growth rates of other microbes, ultimately biassing the bacterial competition to allow the selective establishment of secondary antibiotic-producing strains while excluding non-antibiotic-producing strains that would parasitise the symbiosis. Conclusions: Our findings are consistent with the hypothesis that competition-based screening is a plausible mechanism for maintaining the integrity of the co-adapted mutualism between the leaf-cutting ant farming symbiosis and its defensive microbiome. Our results have broader implications for explaining the stability of other complex symbioses involving horizontal acquisition
    • …
    corecore