24,051 research outputs found

    Feynman diagams coupled to three-dimensional quantum gravity

    Full text link
    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero.Comment: 7 pages. v2: minor corrections, added re

    The NO-NO2 system at laboratory surfaces

    Get PDF
    Experiments on formation and excitation of NO2 and NO molecules at (and near) laboratory surfaces of varying degrees of characterization are reviewed. On some transition metals NO is desorbed in the B sub 2 pi state, from which it radiates the familiar beta (B yields x) bands. In contrast while an ONO intermediate is inferred from isotope interchange measurements on platinum, neither ground state nor excited NO2 has been found to be desorbed under the relatively limited number of laboratory conditions so far investigated

    Surface-catalyzed recombination into excited electronic, vibrational, rotational, and kinetic energy states: A review

    Get PDF
    Laboratory experiments in which recombined CO, CO2, D2O, OH, N2, H2, and O2 molecules desorb from surfaces in excited internal and translational states are briefly reviewed. Unequilibrated distributions predominate from the principally catalytic metal substrates so far investigated. Mean kinetic energies have been observed up to approx. 3x, and in some cases less than, wall-thermal; the velocity distributions generally vary with emission angle, with non-Lambertian particle fluxes. The excitation state populations are found to depend on surface impurities, in an as yet unexplained way

    Electric field formulation for thin film magnetization problems

    Full text link
    We derive a variational formulation for thin film magnetization problems in type-II superconductors written in terms of two variables, the electric field and the magnetization function. A numerical method, based on this formulation, makes it possible to accurately compute all variables of interest, including the electric field, for any value of the power in the power law current-voltage relation characterizing the superconducting material. For high power values we obtain a good approximation to the critical state model solution. Numerical simulation results are presented for simply and multiply connected films, and also for an inhomogeneous film.Comment: 15 p., submitte

    Infrared emission from desorbed NO2(*) and NO(*)

    Get PDF
    Infrared photons from the radiative cascade accompany both the gas phase NO2 continuum chemiluminescence (which originates from its 2B2 and 2B1 states) and the NO beta bands. When these upper electronic states are excited by recombination/desorption at surfaces of low Earth orbiting spacecraft, similar IR emission spectrums will be observed. The principal NO2 features (other than the long wavelength tail of its electronic transitions) are the nu sub 3 fundamental sequence near 6.2 microns and nu sub 1 + nu sub 3 intercombination bands near 3.6 microns; NO would emit the delta v=1 and delta v=2 systems above 5.3 and 2.7 microns. Because of the long radiative lifetimes of the upper vibrational states, the infrared radiances in projections parallel to the vehicle surface (which we estimate) are substantially less than those of the visible and ultraviolet glows

    Stabilization of aerodynamically excited turbomachinery with hydrodynamic journal bearings and supports

    Get PDF
    A method of analyzing the first mode stability and unbalance response of multimass flexible rotors is presented whereby the multimass system is modeled as an equivalent single mass modal model including the effects of rotor flexibility, general linearized hydrodynamic journal bearings, squeeze film bearing supports and rotor aerodynamic cross coupling. Expressions for optimum bearing and support damping are presented for both stability and unbalance response. The method is intended to be used as a preliminary design tool to quickly ascertain the effects of bearing and support changes on rotor-bearing system performance

    Holonomy observables in Ponzano-Regge type state sum models

    Get PDF
    We study observables on group elements in the Ponzano-Regge model. We show that these observables have a natural interpretation in terms of Feynman diagrams on a sphere and contrast them to the well studied observables on the spin labels. We elucidate this interpretation by showing how they arise from the no-gravity limit of the Turaev-Viro model and Chern-Simons theory.Comment: 15 pages, 2 figure

    Efficient quantum key distribution secure against no-signalling eavesdroppers

    Get PDF
    By carrying out measurements on entangled states, two parties can generate a secret key which is secure not only against an eavesdropper bound by the laws of quantum mechanics, but also against a hypothetical "post-quantum" eavesdroppers limited by the no-signalling principle only. We introduce a family of quantum key distribution protocols of this type, which are more efficient than previous ones, both in terms of key rate and noise resistance. Interestingly, the best protocols involve large number of measurements. We show that in the absence of noise, these protocols can yield one secret bit per entanglement bit, implying that the key rates in the no-signalling post-quantum scenario are comparable to the key rates in usual quantum key distribution.Comment: 11 pages, 2 color figures. v2: minor modifications, added references, added note on the relation to quant-ph/060604

    Observables in 3-dimensional quantum gravity and topological invariants

    Full text link
    In this paper we report some results on the expectation values of a set of observables introduced for 3-dimensional Riemannian quantum gravity with positive cosmological constant, that is, observables in the Turaev-Viro model. Instead of giving a formal description of the observables, we just formulate the paper by examples. This means that we just show how an idea works with particular cases and give a way to compute 'expectation values' in general by a topological procedure.Comment: 24 pages, 47 figure

    Spin Foam Models of Matter Coupled to Gravity

    Get PDF
    We construct a class of spin foam models describing matter coupled to gravity, such that the gravitational sector is described by the unitary irreducible representations of the appropriate symmetry group, while the matter sector is described by the finite-dimensional irreducible representations of that group. The corresponding spin foam amplitudes in the four-dimensional gravity case are expressed in terms of the spin network amplitudes for pentagrams with additional external and internal matter edges. We also give a quantum field theory formulation of the model, where the matter degrees of freedom are described by spin network fields carrying the indices from the appropriate group representation. In the non-topological Lorentzian gravity case, we argue that the matter representations should be appropriate SO(3) or SO(2) representations contained in a given Lorentz matter representation, depending on whether one wants to describe a massive or a massless matter field. The corresponding spin network amplitudes are given as multiple integrals of propagators which are matrix spherical functions.Comment: 30 pages, 9 figures, further remarks and references added. Version to appear in Class. Quant. Gra
    • …
    corecore