264 research outputs found

    Super-Eddington accretion on to the neutron star NGC7793 P13: Broad-band X-ray spectroscopy and ultraluminous X-ray sources

    Get PDF
    We present a detailed, broad-band X-ray spectral analysis of the ultraluminous X-ray source (ULX) pulsar NGC 7793 P13, a known super-Eddington source, utilizing data from the XMM–Newton, NuSTAR and Chandra observatories. The broad-band XMM–Newton+NuSTAR spectrum of P13 is qualitatively similar to the rest of the ULX sample with broad-band coverage, suggesting that additional ULXs in the known population may host neutron star accretors. Through time-averaged, phase-resolved and multi-epoch studies, we find that two non-pulsed thermal blackbody components with temperatures ∌0.5 and 1.5 keV are required to fit the data below 10 keV, in addition to a third continuum component which extends to higher energies and is associated with the pulsed emission from the accretion column. The characteristic radii of the thermal components appear to be comparable, and are too large to be associated with the neutron star itself, so the need for two components likely indicates the accretion flow outside the magnetosphere is complex. We suggest a scenario in which the thick inner disc expected for super-Eddington accretion begins to form, but is terminated by the neutron star's magnetic field soon after its onset, implying a limit of B â‰Č 6 × 1012 G for the dipolar component of the central neutron star's magnetic field. Evidence of similar termination of the disc in other sources may offer a further means of identifying additional neutron star ULXs. Finally, we examine the spectrum exhibited by P13 during one of its unusual ‘off’ states. These data require both a hard power-law component, suggesting residual accretion on to the neutron star, and emission from a thermal plasma, which we argue is likely associated with the P13 system

    Discovery of coherent pulsations from the Ultraluminous X-ray Source NGC 7793 P13

    Get PDF
    We report the detection of coherent pulsations from the ultraluminous X-ray source (ULX) NGC 7793 P13. The ≈0.42 s nearly sinusoidal pulsations were initially discovered in broadband X-ray observations using XMM-Newton and NuSTAR taken in 2016. We subsequently also found pulsations in archival XMM-Newton data taken in 2013 and 2014. The significant (≫5σ) detection of coherent pulsations demonstrates that the compact object in P13 is a neutron star, and given the observed peak luminosity of ≈10⁎⁰ erg s⁻Âč (assuming isotropy), it is well above the Eddington limit for a 1.4 M⹀ accretor. This makes P13 the second ULX known to be powered by an accreting neutron star. The pulse period varies between epochs, with a slow but persistent spin-up over the 2013–2016 period. This spin-up indicates a magnetic field of B ≈ 1.5 × 10ÂčÂČ G, typical of many Galactic accreting pulsars. The most likely explanation for the extreme luminosity is a high degree of beaming; however, this is difficult to reconcile with the sinusoidal pulse profile.We would like the thank the referee for the helpful comments. M.J.M. acknowledges support from an STFC Ernest Rutherford fellowship and D.B. acknowledges financial support from the French Space Agency (CNES). This research has made use of data obtained with NuSTAR, a project led by Caltech, funded by NASA and managed by NASA/JPL, and has utilized the nustardas software package, jointly developed by the ASDC (Italy) and Caltech (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, and also made use of the XRT Data Analysis Software (XRTDAS) developed under the responsibility of the ASI Science Data Center (ASDC), Italy. This research has made use of a collection of ISIS functions (ISISscripts) provided by ECAP/Remeis observatory and MIT (http://www.sternwarte.uni-erlangen.de/isis/). Facilities: NuSTAR - The NuSTAR (Nuclear Spectroscopic Telescope Array) mission, XMM - , Swift -

    Negotiating the transition from adolescence to motherhood: Coping with prenatal and parenting stress in teenage mothers in Mulago hospital, Uganda

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adolescence is a transitional stage from childhood to adulthood that is characterized by physical, physiological, psychosocial and behavioral changes that are influenced to a large extent by the age, culture and socialization of the individual. To explore what adolescent mothers perceive as their struggles during the period of transition from childhood to parenthood (through motherhood) and to describe strategies employed in coping with stress of pregnancy, motherhood and parenthood.</p> <p>Methods</p> <p>Longitudinal qualitative study involving twenty two in-depth interviews and six focus group discussions among pregnant adolescents who were followed from pregnant to delivery, from January 2004 to August 2005. Participant were selected by theoretical sampling and data was analyzed using grounded theory.</p> <p>Results</p> <p>Overall, young adolescents reported more anxiety, loss of self esteem (when they conceived), difficulty in accessing financial, moral and material support from parents or partners and stigmatization by health workers when they sought care from health facilities. Three strategies by which adolescent mothers cope with parenting and pregnancy stress that were described as utilizing opportunities (thriving), accommodating the challenges (bargaining and surviving), or failure (despairing), and varied in the extent to which they enabled adolescents to cope with the stress.</p> <p>Conclusion</p> <p>Adolescents on the transition to motherhood have variable needs and aspirations and utilize different strategies to cope with the stress of pregnancy and parenthood.</p

    XMM–Newton campaign on ultraluminous X-ray source NGC 1313 X-1: wind versus state variability

    Get PDF
    Most ultraluminous X-ray sources (ULXs) are thought to be powered by neutron stars and black holes accreting beyond the Eddington limit. If the compact object is a black hole or a neutron star with a magnetic field â‰Č1012 G, the accretion disc is expected to thicken and launch powerful winds driven by radiation pressure. Evidence of such winds has been found in ULXs through the high-resolution spectrometers onboardXMM–Newton, but several unknowns remain, such as the geometry and launching mechanism of these winds. In order to better understand ULX winds and their link to the accretion regime, we have undertaken a major campaign with XMM–Newton to study the ULX NGC 1313 X-1, which is known to exhibit strong emission and absorption features from a mildly relativistic wind. The new observations show clear changes in the wind with a significantly weakened fast component (0.2c) and the rise of a new wind phase which is cooler and slower (0.06–0.08c). We also detect for the first time variability in the emission lines which indicates an origin within the accretion disc or in the wind. We describe the variability of the wind in the framework of variable super-Eddington accretion rate and discuss a possible geometry for the accretion disc

    Investigation of glutathione S-transferase zeta and the development of sporadic breast cancer

    Get PDF
    BACKGROUND: Certain genes from the glutathione S-transferase superfamily have been associated with several cancer types. It was the objective of this study to determine whether alleles of the glutathione S-transferase zeta 1 (GSTZ1) gene are associated with the development of sporadic breast cancer. METHODS: DNA samples obtained from a Caucasian population affected by breast cancer and a control population, matched for age and ethnicity, were genotyped for a polymorphism of the GSTZ1 gene. After PCR, alleles were identified by restriction enzyme digestion and results analysed by chi-square and CLUMP analysis. RESULTS: Chi-squared analysis gave a χ(2) value of 4.77 (three degrees of freedom) with P = 0.19, and CLUMP analysis gave a T1 value of 9.02 with P = 0.45 for genotype frequencies and a T1 value of 4.77 with P = 0.19 for allele frequencies. CONCLUSION: Statistical analysis indicates that there is no association of the GSTZ1 variant and hence the gene does not appear to play a significant role in the development of sporadic breast cancer

    An iron K component to the ultrafast outflow in NGC 1313 X-1

    Get PDF
    We present the detection of an absorption feature at EE = 8.77−0.06+0.05^{+0.05}_{-0.06} keV in the combined X-ray spectrum of the ultraluminous X-ray source NGC 1313 X-1 observed with XMM-Newton\textit{XMM-Newton} and NuSTAR\textit{NuSTAR}, significant at the 3σ\sigma level. If associated with blueshifted ionized iron, the implied outflow velocity is ~0.2cc for Fe XXVI, or ~0.25cc for Fe XXV. These velocities are similar to the ultrafast outflow seen in absorption recently discovered in this source at lower energies by XMM-Newton\textit{XMM-Newton}, and we therefore conclude that this is an iron component to the same outflow. Photoionization modeling marginally prefers the Fe XXV solution, but in either case the outflow properties appear to be extreme, potentially supporting a super-Eddington hypothesis for NGC 1313 X-1.M.J.M. acknowledges support from an STFC Ernest Rutherford fellowship, C.P. and A.C.F. acknowledge support from ERC Advanced Grant 340442, and D.B. acknowledges financial support from the French Space Agency (CNES). This research has made use of data obtained with NuSTAR, a project led by Caltech, funded by NASA, and managed by NASA/JPL, and has utilized the NUSTARDAS software package, jointly developed by the ASDC (Italy) and Caltech (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States

    The Broadband Spectral Variability of Holmberg IX X-1

    Get PDF
    We present results from four new broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 (Lx_{x} > 1040^{40} erg s−1^{-1}), performed by Suzaku\textit{Suzaku} and Nu\textit{Nu}STAR in coordination. Combined with the archival data, we now have broadband observations of this remarkable source from six separate epochs. Two of these new observations probe lower fluxes than seen previously, allowing us to extend our knowledge of the broadband spectral variability exhibited. The spectra are well fit by two thermal blackbody components that dominate the emission below 10 keV, as well as a steep (Γ\Gamma ∌\sim 3.5) power-law tail that dominates above ~15 keV. Remarkably, while the 0.3–10.0 keV flux varies by a factor of ~3 between all these epochs, the 15–40 keV flux varies by only ~20%. Although the spectral variability is strongest in the ~1–10 keV band, both of the thermal components are required to vary when all epochs are considered. We also revisit the search for iron absorption features by leveraging the high-energy NuSTAR data to improve our sensitivity to extreme velocity outflows in light of the ultra-fast outflow recently detected in NGC 1313 X-1. Iron absorption from a similar outflow along our line of sight can be ruled out in this case. We discuss these results in the context of super-Eddington accretion models that invoke a funnel-like geometry for the inner flow, and propose a scenario in which we have an almost face-on view of a funnel that expands to larger radii with increasing flux, resulting in an increasing degree of geometrical collimation for the emission from intermediate-temperature regions.D.J.W. and M.J.M. acknowledge support from STFC through Ernest Rutherford fellowships, A.C.F. acknowledges support from ERC Advanced Grant 340442, and D.B. acknowledges financial support from the French Space Agency (CNES). This research has made use of data obtained with NuSTAR, a project led by Caltech, funded by NASA and managed by NASA/JPL, and has utilized the NUSTARDAS software package, jointly developed by the ASDC (Italy) and Caltech (USA). This research has also made use of data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States, and with Suzaku, a collaborative mission between the space agencies of Japan (JAXA) and the USA (NASA)

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Chronic hypothermia and energy expenditure in a neurodevelopmentally disabled patient: a case study

    Get PDF
    Hypothermia is defined as a core body temperature of \u3c35°C and results in a decrease in measured resting energy expenditure. A 51-year-old mentally disabled patient experienced chronic hypothermia from neurologic sequelae. Because of her continued weight gain and increased body fat in the presence of presumed hypocaloric nutrition, indirect calorimetry measurements were performed twice in a 3-month period. The resting energy expenditure measurements prompted a reduction of her daily caloric intake to prevent further overfeeding. Hypothermia reduces oxygen consumption and, as a consequence, decreases resting energy expenditure. In patients for whom chronic hypothermia is a problem, nutritional intake must be adjusted to prevent overfeeding, excessive weight gain, and the long-term complications of an excess of total calories

    Effective Rheology of Bubbles Moving in a Capillary Tube

    Full text link
    We calculate the average volumetric flux versus pressure drop of bubbles moving in a single capillary tube with varying diameter, finding a square-root relation from mapping the flow equations onto that of a driven overdamped pendulum. The calculation is based on a derivation of the equation of motion of a bubble train from considering the capillary forces and the entropy production associated with the viscous flow. We also calculate the configurational probability of the positions of the bubbles.Comment: 4 pages, 1 figur
    • 

    corecore