56 research outputs found

    A Comparison of Fundamental Noise in Kinetic Inductance Detectors and Transition Edge Sensors for Millimeter-wave Applications

    Get PDF
    Kinetic inductance detectors (KIDs) show promise as a competitive technology for astronomical observations over a wide range of wavelengths. We are interested in comparing the fundamental limitations to the sensitivity of KIDs with that of transition edge sensors (TESs) at millimeter wavelengths, specifically over the wavelengths required for studies of the Cosmic Microwave Background (CMB). We calculate the total fundamental noise arising from optical and thermal excitations in TESs and KIDs for a variety of bath temperatures and optical loading scenarios for applications at millimeter wavelengths. Special consideration is given to the case of ground-based observations of 100 GHz radiation with a 100 mK bath temperature, conditions consistent with the planned second module of the QUBIC telescope, a CMB instrument. Under these conditions, a titanium nitride KID with optimized critical temperature pays a few percent noise penalty compared to a typical optimized TES.Comment: 6 pages, 2 figures, Proceedings of 15th International Workshop on Low Temperature Detectors (LTD-15, Pasadena, California, June 2013), To be published in the Journal of Low Temperature Physics (JLTP

    Developing a Novel Platform for Characterizing Thermoelectric Materials for Uncooled Detectors for Land Imaging Applications

    Get PDF
    Thermal land imaging (imaging at ~8-14 micron optical wavelength) is an essential tool for understanding and managing terrestrial freshwater resources. Current thermal imaging instruments employ low temperature detectors, which require cryocoolers. Consequently, cost-saving reductions in size, weight, and power can be achieved by employing uncooled detectors. One uncooled detector concept, which NASA is pursuing, is a thermopile detector with sub-micron thick doped-Si thermoelectric materials. In order to characterize the thermoelectric properties of the doped silicon, we designed and optimized a novel apparatus. This simple apparatus measures the Seebeck coefficient with thermally isolated stages and LABVIEW automation. We optimized thermal stability using PID tuning and optimized the thermal contact between the thin film samples and stages using electrically conductive springs. Utilizing our apparatus, we measured the Seebeck coefficient of 0.45 micron thick phosphorus-doped single crystal Si samples bonded to alumina substrates. Using these Seebeck coefficient measurements and four-wire electrical resistivity measurements, we determined the relationship between the thermoelectric figure of merit and dopant concentration. These characterization results for doped-Si will guide our thermopile detector design to provide an optimal and competitive detector alternative for future thermal imaging instruments

    Developing a New Generation of Integrated Micro-Spec Far Infrared Spectrometers for the EXperiment for Cryogenic Large-Aperture Intensity Mapping (EXCLAIM)

    Full text link
    The current state of far-infrared astronomy drives the need to develop compact, sensitive spectrometers for future space and ground-based instruments. Here we present details of the μ\rm \mu-Spec spectrometers currently in development for the far-infrared balloon mission EXCLAIM. The spectrometers are designed to cover the 555714 μ\rm 555 - 714\ \mum range with a resolution of $\rm R\ =\ \lambda / \Delta\lambda\ =\ 512atthe at the \rm 638\ \mumbandcenter.ThespectrometerdesignincorporatesaRowlandgratingspectrometerimplementedinaparallelplatewaveguideonalowlosssinglecrystalSichip,employingNbmicrostripplanartransmissionlinesandthinfilmAlkineticinductancedetectors(KIDs).TheEXCLAIMm band center. The spectrometer design incorporates a Rowland grating spectrometer implemented in a parallel plate waveguide on a low-loss single-crystal Si chip, employing Nb microstrip planar transmission lines and thin-film Al kinetic inductance detectors (KIDs). The EXCLAIM \rm \muSpecdesignisanadvancementuponasuccessful-Spec design is an advancement upon a successful \rm R = 64\ \muSpecprototype,andcanbeconsideredasubmmsuperconductingphotonicintegratedcircuit(PIC)thatcombinesspectraldispersionanddetection.Thedesignoperatesinasingle-Spec prototype, and can be considered a sub-mm superconducting photonic integrated circuit (PIC) that combines spectral dispersion and detection. The design operates in a single M{=}2gratingorder,allowingonespectrometertocoverthefullEXCLAIMbandwithoutrequiringamultiorderfocalplane.TheEXCLAIMinstrumentwillflysixspectrometers,whicharefabricatedonasingle150mmdiameterSiwafer.FabricationinvolvesaflipwaferbondingprocesswithpatterningofthesuperconductinglayersonbothsidesoftheSidielectric.Thespectrometersaredesignedtooperateat100mK,andwillinclude355AlKIDdetectorstargetingagoalofNEP grating order, allowing one spectrometer to cover the full EXCLAIM band without requiring a multi-order focal plane. The EXCLAIM instrument will fly six spectrometers, which are fabricated on a single 150 mm diameter Si wafer. Fabrication involves a flip-wafer-bonding process with patterning of the superconducting layers on both sides of the Si dielectric. The spectrometers are designed to operate at 100 mK, and will include 355 Al KID detectors targeting a goal of NEP {\sim}8\times10^{-19} \rm W/\sqrt{Hz}.Wesummarizethedesign,fabrication,andongoingdevelopmentofthese. We summarize the design, fabrication, and ongoing development of these \rm \mu$-Spec spectrometers for EXCLAIM.Comment: 9 pages, 5 figures, to appear in the Proceedings of the SPIE Astronomical Telescopes + Instrumentation (2022

    Characterization of Si-Membrane TES Bolometer Arrays for the HIRMES Instrument

    Get PDF
    The High Resolution Mid-Infrared Spectrometer (HIRMES) instrument will fly onboard NASA's airborne Stratospheric Observatory for Infrared Astronomy (SOFIA) in 2019. HIRMES will provide astronomers with a unique observing window (25 122 m) for exploring the evolution of protoplanetary disks into young solar systems, and the composition of our Solar System. There are two focal plane detector arrays for the instrument: a high-resolution (/ = 100,000) 8x16 detector array with a target noise-equivalent power, NEP 3x10-18 W/Hz; and a low-resolution (/ = 2,000 19,000) 16x64 detector array with a target NEP 2x10-17 W/Hz. The detectors for both of these arrays are superconducting Mo/Au bilayer transition edge sensor (TES) bolometers on thin suspended single-crystal silicon membranes. Here we present our characterization results for the detectors in both arrays, including measurements of thermal conductance with comparison to phonon transport models, saturation power, noise, and array uniformity

    Experiment for cryogenic large-aperture intensity mapping: instrument design

    Get PDF
    The experiment for cryogenic large-aperture intensity mapping (EXCLAIM) is a balloon-borne telescope designed to survey star formation in windows from the present to z  =  3.5. During this time, the rate of star formation dropped dramatically, while dark matter continued to cluster. EXCLAIM maps the redshifted emission of singly ionized carbon lines and carbon monoxide using intensity mapping, which permits a blind and complete survey of emitting gas through statistics of cumulative brightness fluctuations. EXCLAIM achieves high sensitivity using a cryogenic telescope coupled to six integrated spectrometers employing kinetic inductance detectors covering 420 to 540 GHz with spectral resolving power R  =  512 and angular resolution ≈4  arc min. The spectral resolving power and cryogenic telescope allow the survey to access dark windows in the spectrum of emission from the upper atmosphere. EXCLAIM will survey 305  deg2 in the Sloan Digital Sky Survey Stripe 82 field from a conventional balloon flight in 2023. EXCLAIM will also map several galactic fields to study carbon monoxide and neutral carbon emission as tracers of molecular gas. We summarize the design phase of the mission
    corecore