research
Developing a Novel Platform for Characterizing Thermoelectric Materials for Uncooled Detectors for Land Imaging Applications
- Publication date
- Publisher
Abstract
Thermal land imaging (imaging at ~8-14 micron optical wavelength) is an essential tool for understanding and managing terrestrial freshwater resources. Current thermal imaging instruments employ low temperature detectors, which require cryocoolers. Consequently, cost-saving reductions in size, weight, and power can be achieved by employing uncooled detectors. One uncooled detector concept, which NASA is pursuing, is a thermopile detector with sub-micron thick doped-Si thermoelectric materials. In order to characterize the thermoelectric properties of the doped silicon, we designed and optimized a novel apparatus. This simple apparatus measures the Seebeck coefficient with thermally isolated stages and LABVIEW automation. We optimized thermal stability using PID tuning and optimized the thermal contact between the thin film samples and stages using electrically conductive springs. Utilizing our apparatus, we measured the Seebeck coefficient of 0.45 micron thick phosphorus-doped single crystal Si samples bonded to alumina substrates. Using these Seebeck coefficient measurements and four-wire electrical resistivity measurements, we determined the relationship between the thermoelectric figure of merit and dopant concentration. These characterization results for doped-Si will guide our thermopile detector design to provide an optimal and competitive detector alternative for future thermal imaging instruments