105 research outputs found

    The facilitated glucose transporter GLUT12: What do we know and what would we like to know?

    Get PDF
    Human GLUT12 was isolated from the breast cancer cell line MCF-7 by its homology with GLUT4. Glucose has been described as its main substrate, but it also can transport other sugars. In humans, GLUT12 protein is expressed mainly in insulin sensitive tissues. Functional analysis has showed that GLUT12 transports sugars down its concentration gradient, but it can also work as a proton-coupled symporter. Studies from our laboratory, performed in Xenopus laevis oocytes expressing GLUT12, show that glucose uptake increases in the presence of Na+ and induces inward current. These findings suggest a transport mechanism never described for other GLUTs, which would indicate a distinct functional role for GLUT12. In relation with its physiological and pathophysiological function, GLUT12 has been mainly studied due to its role as a secondary insulin-sensitive glucose transporter and its possible implication in impaired insulin signalling pathologies. Its expression in some tumour tissues has been described and recently, it has been proposed as one of the key proteins in the glucose supply to malignant cells. Overall, even though a lot of information about GLUT12 has been released during the last years, its functional characteristics, physiological role or implication in the development of some diseases is still unclear. Therefore, this review of the literature can help to address further investigations needed to elucidate these issues that, in our view, are of great interest mainly due to the direct GLUT12 relation with cancer and probably with diabetes development

    Effect of a diet supplemented with sphingomyelin and probiotics on colon cancer development in mice

    Get PDF
    Previous studies have reported that dietary sphingomyelin could inhibit early stages of colon cancer. Lactic acid–producing bacteria have also been associated with an amelioration of cancer symptoms. However, little is known about the potential beneficial effects of the combined administration of both sphingomyelin and lactic acid–producing bacteria. This article analyzes the effect of a diet supplemented with a combination of the probiotics Lacticaseibacillus casei and Bifidobacterium bifidum (108 CFU/ml) and sphingomyelin (0.05%) on mice with 1,2-dimethylhydrazine (DMH)-induced colon cancer. Thirty-six BALB/c mice were divided into 3 groups: one healthy group (group C) and two groups with DMH-induced cancer, one fed a standard diet (group D) and the other fed a diet supplemented with sphingomyelin and probiotics (DS). The number of aberrant crypt foci, marker of colon cancer development, was lower in the DS. The dietary supplementation with the synbiotic reversed the cancer-induced impairment of galactose uptake in enterocyte brush–border–membrane vesicles. These results confirm the beneficial effects of the synbiotic on the intestinal physiology of colon cancer mice and contribute to the understanding of the possible mechanisms involved.This study was supported by the Government of Spain grant number AGL 2006–1029-C02-01/ALI, CIBER (CB12/03/30002) and the Department of Innovation, Business and Employment of the Government of Navarra (Spain)

    Leptin regulates sugar and amino acids transport in the human intestinal cell line Caco-2

    Get PDF
    Aim: Studies in rodents have shown that leptin controls sugars and glutamine entry in the enterocytes by regulating membrane transporters. Here, we have examined the effect of leptin on sugar and amino acids absorption in the human model of intestinal cells Caco-2 and investigated the transporters involved. Methods: Substrate uptake experiments were performed in Caco-2 cells, grown on plates, in the presence and the absence of leptin and the expression of the different transporters in brush border membrane vesicles was analysed by Western blot. Results: Leptin inhibited 0.1 mM α-methyl-D-glucoside uptake after 5 or 30 min treatment, and decreased SGLT1 protein abundance in the apical membrane. Uptake of 20 µM glutamine and 0.1 mM phenylalanine was also inhibited by leptin, indicating sensitivity to the hormone of the Na+-dependent neutral amino acid transporters ASCT2 and B0AT1. This inhibition was accompanied by a reduction of the transporters expression at the brush-border membrane. Leptin also inhibited 1 mM proline and β-alanine uptake in Na+ medium at pH 6, conditions for optimal activity of the H+-dependent neutral amino acid transporter PAT1. In this case, abundance of PAT1 in the brush-border membrane after leptin treatment was not modified. Interestingly, leptin inhibitory effect on β-alanine uptake was reversed by the PKA inhibitor H-89 suggesting involvement of PKA pathway in leptin´s regulation of PAT1 activity. Conclusion: These data show in human intestinal cells that leptin can rapidly control the activity of physiologically relevant transporters for rich-energy molecules, i.e D-glucose (SGLT1) and amino acids (ASCT2, B0AT1 and PAT1)

    Basal leptin regulates amino acid uptake in polarized Caco-2 cells

    Get PDF
    Leptin is secreted by gastric mucosa and is able to reach the intestinal lumen where its receptors are located in the apical membrane of the enterocytes. We have previously demonstrated that apical leptin inhibits sugar and amino acids uptake in vitro and glucose absorption in vivo. Since leptin receptors are also expressed in the basolateral membrane of the enterocytes, the aim of the present work was to investigate whether leptin acting from the basolateral side could also regulate amino acid uptake. Tritiated Gln and β-Ala were used to measure uptake into Caco-2 cells grown on filters, in the presence of basal leptin at short incubation times (5 and 30 min) and after 6 h of preincubation with the hormone. In order to compare apical and basal leptin effect, Gln and β-Ala uptake was measured in the presence of leptin acting from the apical membrane also in cells grown on filters. Basal leptin (8 mM) inhibited by ~15–30 % the uptake of 0.1 mM Gln and 1 mM β-Ala quickly, after 5 min exposure, and the effect was maintained after long preincubation periods. Apical leptin had the same effect. Moreover, the inhibition was rapidly and completely reversed when leptin was removed from the apical or basolateral medium. These results extend our previous findings and contribute to the vision of leptin as an important hormonal signal for the regulation of intestinal absorption of nutrients

    Matrix metalloproteinase-10 effectively reduces infarct size in experimental stroke by enhancing fibrinolysis via a thrombin-activatable fibrinolysis inhibitor-mediated mechanism

    Get PDF
    BACKGROUND: The fibrinolytic and matrix metalloproteinase (MMP) systems cooperate in thrombus dissolution and extracellular matrix proteolysis. The plasminogen/plasmin system activates MMPs, and some MMPs have been involved in the dissolution of fibrin by targeting fibrin(ogen) directly or by collaborating with plasmin. MMP-10 has been implicated in inflammatory/thrombotic processes and vascular integrity, but whether MMP-10 could have a profibrinolytic effect and represent a promising thrombolytic agent is unknown. METHODS AND RESULTS: The effect of MMP-10 on fibrinolysis was studied in vitro and in vivo, in MMP-10-null mice (Mmp10(-/-)), with the use of 2 different murine models of arterial thrombosis: laser-induced carotid injury and ischemic stroke. In vitro, we showed that MMP-10 was capable of enhancing tissue plasminogen activator-induced fibrinolysis via a thrombin-activatable fibrinolysis inhibitor inactivation-mediated mechanism. In vivo, delayed fibrinolysis observed after photochemical carotid injury in Mmp10(-/-) mice was reversed by active recombinant human MMP-10. In a thrombin-induced stroke model, the reperfusion and the infarct size in sham or tissue plasminogen activator-treated animals were severely impaired in Mmp10(-/-) mice. In this model, administration of active MMP-10 to wild-type animals significantly reduced blood reperfusion time and infarct size to the same extent as tissue plasminogen activator and was associated with shorter bleeding time and no intracranial hemorrhage. This effect was not observed in thrombin-activatable fibrinolysis inhibitor-deficient mice, suggesting thrombin-activatable fibrinolysis inhibitor inactivation as one of the mechanisms involved in the MMP-10 profibrinolytic effect. CONCLUSIONS: A novel profibrinolytic role for MMP-10 in experimental ischemic stroke is described, opening new pathways for innovative fibrinolytic strategies in arterial thrombosis

    Matrix metalloproteinase-10 is upregulated by thrombin in endothelial cells and increased in patients with enhanced thrombin generation

    Get PDF
    OBJECTIVE: Thrombin is a multifunctional serine protease that promotes vascular proinflammatory responses whose effect on endothelial MMP-10 expression has not previously been evaluated. METHODS AND RESULTS: Thrombin induced endothelial MMP-10 mRNA and protein levels, through a protease-activated receptor-1 (PAR-1)-dependent mechanism, in a dose- and time-dependent manner. This effect was mimicked by a PAR-1 agonist peptide (TRAP-1) and antagonized by an anti-PAR-1 blocking antibody. MMP-10 induction was dependent on extracellular regulated kinase1/2 (ERK1/2) and c-jun N-terminal kinase (JNK) pathways. By serial deletion analysis, site-directed mutagenesis and electrophoretic mobility shift assay an AP-1 site in the proximal region of MMP-10 promoter was found to be critical for thrombin-induced MMP-10 transcriptional activity. Thrombin and TRAP-1 upregulated MMP-10 in murine endothelial cells in culture and in vivo in mouse aorta. This effect of thrombin was not observed in PAR-1-deficient mice. Interestingly, circulating MMP-10 levels (P<0.01) were augmented in patients with endothelial activation associated with high (disseminated intravascular coagulation) and moderate (previous acute myocardial infarction) systemic thrombin generation. CONCLUSIONS: Thrombin induces MMP-10 through a PAR-1-dependent mechanism mediated by ERK1/2, JNK, and AP-1 activation. Endothelial MMP-10 upregulation could be regarded as a new proinflammatory effect of thrombin whose pathological consequences in thrombin-related disorders and plaque stability deserve further investigation

    Resistin-Like Molecule-β Inhibits SGLT-1 Activity and Enhances GLUT2-Dependent Jejunal Glucose Transport

    Get PDF
    International audienceOBJECTIVE: An increased expression of RELM-beta (resistin-like molecule-beta), a gut-derived hormone, is observed in animal models of insulin resistance/obesity and intestinal inflammation. Intestinal sugar absorption is modulated by dietary environment and hormones/cytokines. The aim of this study was to investigate the effect of RELM-beta on intestinal glucose absorption. RESEARCH DESIGN AND METHODS: Oral glucose tolerance test was performed in mice and rats in the presence and the absence of RELM-beta. The RELM-beta action on glucose transport in rat jejunal sacs, everted rings, and mucosal strips was explored as well as downstream kinases modulating SGLT-1 and GLUT2 glucose transporters. RESULTS: Oral glucose tolerance test carried out in rodents showed that oral administration of RELM-beta increased glycemia. Studies in rat jejunal tissue indicated that mucosal RELM-beta promoted absorption of glucose from the gut lumen. RELM-beta had no effect on paracellular mannitol transport, suggesting a transporter-mediated transcellular mechanism. In studies with jejunal mucosa mounted in Ussing chamber, luminal RELM-beta inhibited SGLT-1 activity in line with a diminished SGLT-1 abundance in brush border membranes (BBMs). Further, the potentiating effect of RELM-beta on jejunal glucose uptake was associated with an increased abundance of GLUT2 at BBMs. The effects of RELM-beta were associated with an increased amount of protein kinase C betaII in BBMs and an increased phosphorylation of AMP-activated protein kinase (AMPK). CONCLUSIONS: The regulation of SGLT-1 and GLUT2 by RELM-beta expands the role of gut hormones in short-term AMPK/protein kinase C mediated control of energy balance

    A review on gastric leptin: the exocrine secretion of a gastric hormone

    Get PDF
    A major advance in the understanding of the regulation of food intake has been the discovery of the adipokine leptin a hormone secreted by the adipose tissue. After crossing the blood-brain barrier, leptin reaches its main site of action at the level of the hypothalamic cells where it plays fundamental roles in the control of appetite and in the regulation of energy expenditure. At first considered as a hormone specific to the white adipose tissue, it was rapidly found to be expressed by other tissues. Among these, the gastric mucosa has been demonstrated to secrete large amounts of leptin. Secretion of leptin by the gastric chief cells was found to be an exocrine secretion. Leptin is secreted towards the gastric lumen into the gastric juice. We found that while secretion of leptin by the white adipose tissue is constitutive, secretion by the gastric cells is a regulated one responding very rapidly to secretory stimuli such as food intake. Exocrine-secreted leptin survives the hydrolytic conditions of the gastric juice by forming a complex with its soluble receptor. This soluble receptor is synthesized by the gastric cells and the leptin-leptin receptor complex gets formed at the level of the gastric chief cell secretory granules before being released into the gastric lumen. The leptin-leptin receptor upon resisting the hydrolytic conditions of the gastric juice is channelled, to the duodenum. Transmembrane leptin receptors expressed at the luminal membrane of the duodenal enterocytes interact with the luminal leptin. Leptin is actively transcytosed by the duodenal enterocytes. From the apical membrane it is transferred to the Golgi apparatus where it binds again its soluble receptor. The newly formed leptin-leptin receptor complex is then secreted baso-laterally into the intestinal mucosa to reach the blood capillaries and circulation thus reaching the hypothalamus where its action regulates food intake. Exocrine-secreted gastric leptin participates in the short term regulation of food intake independently from that secreted by the adipose tissue. Adipose tissue leptin on the other hand, regulates in the long term energy storage. Both tissues work in tandem to ensure management of food intake and energy expenditure
    corecore