278 research outputs found
Instant preheating mechanism and UHECR
Top-down models assume that the still unexplained Ultra High Energy Cosmic
Rays (UHECR's) are the decay products of superheavy particles. Such particles
may have been produced by one of the post-inflationary reheating mechanisms and
may account for a fraction of the cold dark matter. In this paper, we assess
the phenomenological applicability of the simplest instant preheating framework
not to describe a reheating process, but as a mechanism to generate relic
supermassive particles as possible sources of UHECR's. We use cosmic ray flux
and cold dark matter observational data to constrain the parameters of the
model.Comment: 7 pages, 2 figures, submitted to PR
Very high frequency gravitational wave background in the universe
Astrophysical sources of high frequency gravitational radiation are
considered in association with a new interest to very sensitive HFGW receivers
required for the laboratory GW Hertz experiment. A special attention is paid to
the phenomenon of primordial black holes evaporation. They act like black body
to all kinds of radiation, including gravitons, and, therefore, emit an
equilibrium spectrum of gravitons during its evaporation. Limit on the density
of high frequency gravitons in the Universe is obtained, and possibilities of
their detection are briefly discussed.Comment: 14 page
Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections
Effects of inverse triad corrections and (point) holonomy corrections,
occuring in loop quantum gravity, are considered on the properties of
Reissner-Nordstr\"om black holes. The version of inverse triad corrections with
unmodified constraint algebra reveals the possibility of occurrence of three
horizons (over a finite range of mass) and also shows a mass threshold beyond
which the inner horizon disappears. For the version with modified constraint
algebra, coordinate transformations are no longer a good symmetry. The
covariance property of spacetime is regained by using a \emph{quantum} notion
of mapping from phase space to spacetime. The resulting quantum effects in both
versions of these corrections can be associated with renormalization of either
mass, charge or wave function. In neither of the versions, Newton's constant is
renormalized. (Point) Holonomy corrections are shown to preclude the undeformed
version of constraint algebra as also a static solution, though
time-independent solutions exist. A possible reason for difficulty in
constructing a covariant metric for these corrections is highlighted.
Furthermore, the deformed algebra with holonomy corrections is shown to imply
signature change.Comment: 38 pages, 9 figures, matches published versio
TeV-Scale Black Hole Lifetimes in Extra-Dimensional Lovelock Gravity
We examine the mass loss rates and lifetimes of TeV-scale extra dimensional
black holes (BH) in ADD-like models with Lovelock higher-curvature terms
present in the action. In particular we focus on the predicted differences
between the canonical and microcanonical ensemble statistical mechanics
descriptions of the Hawking radiation that results in the decay of these BH. In
even numbers of extra dimensions the employment of the microcanonical approach
is shown to generally lead to a significant increase in the BH lifetime as in
case of the Einstein-Hilbert action. For odd numbers of extra dimensions,
stable BH remnants occur when employing either description provided the highest
order allowed Lovelock invariant is present. However, in this case, the time
dependence of the mass loss rates obtained employing the two approaches will be
different. These effects are in principle measurable at future colliders.Comment: 27 pages, 9 figs; Refs. and discussion adde
Effect of Palmitic Acid on the Electrical Conductivity of Carbon Nanotubes−Epoxy Resin Composites
We found that the palmitic acid allows an efficient dispersion of carbon nanotubes in the epoxy matrix. We have set up an experimental protocol in order to enhance the CNTs dispersion in epoxy resin. Electrical conductivity is optimal using a 1:1 CNTs to palmitic acid weight ratio. The associated percolation threshold is found between 0.05 and 0.1 wt % CNTs, i.e., between 0.03 and 0.06 vol %. The SEM image shows essentially individual CNTs which is inagreement with conductivity measurements. In comparison with composites without palmitic acid, the use of palmitic acid improves the electrical properties of CNTs-epoxy resin composites
Recommended from our members
Three-dimensional flow effects on forced convection heat transfer in a channel with stepwise-varying width
A numerical investigation based on the finite volume methodology of the three-dimensional laminar flow and conjugate heat transfer inside a plate-fin heat sink with stepwise-varying channel width is presented. Results are obtained for the three-dimensional flow developed in the vicinity of the flow contraction as manifested by the existence of two pairs of contra-rotating longitudinal vortices, one at the corners of the fin leading edge and the other at the flow separated regions. The topology of the flow is thoroughly examined and the contributions of the endwalls and the front surface of the flow-contracting fin to the mechanisms that cause the emergence of the three-dimensionality are determined. It is established that the corner longitudinal vortices are in fact horseshoe vortices, which emerge due to the deceleration effect of the fin front surface on the oncoming fluid. Furthermore, the interaction between the corner longitudinal vortices and the downstream recirculation bubble formed over the fin tip is also elucidated. The analysis covers a wide range of flow conditions within the laminar region in order to monitor the effect of the Reynolds number on the flow topology and to verify that the flow remains symmetrical in this region. From the numerical results, it is deduced that the recirculation downstream of the flow contraction has a beneficial impact on the heat sink thermal performance, a fact quantified through the local Nusselt number distributions
Quasinormal modes for tensor and vector type perturbation of Gauss Bonnet black holes using third order WKB approach
We obtain the quasinormal modes for tensor perturbations of Gauss-Bonnet (GB)
black holes in dimensions and vector perturbations in
and 8 dimensions using third order WKB formalism. The tensor perturbation for
black holes in is not considered because of the fact that it is unstable
to tensor mode perturbations. In the case of uncharged GB black hole, for both
tensor and vector perturbations, the real part of the QN frequency increases as
the Gauss-Bonnet coupling () increases. The imaginary part first
decreases upto a certain value of and then increases with
for both tensor and vector perturbations. For larger values of , the
QN frequencies for vector perturbation differs slightly from the QN frequencies
for tensorial one. It has also been shown that as , the
quasinormal mode frequency for tensor and vector perturbation of the
Schwarzschild black hole can be obtained. We have also calculated the
quasinormal spectrum of the charged GB black hole for tensor perturbations.
Here we have found that the real oscillation frequency increases, while the
imaginary part of the frequency falls with the increase of the charge. We also
show that the quasinormal frequencies for scalar field perturbations and the
tensor gravitational perturbations do not match as was claimed in the
literature. The difference in the result increases if we increase the GB
coupling.Comment: 17 pages, 11 figures, change in title and abstract, new equations and
results added for QN frequencies for vector perturbations, new referencees
adde
Loop quantum gravity: the first twenty five years
This is a review paper invited by the journal "Classical ad Quantum Gravity"
for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic
presentation of loop gravity. I spell-out the aims of the theory and compare
the results obtained with the initial hopes that motivated the early interest
in this research direction. I give my own perspective on the status of the
program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure
Brane decay of a (4+n)-dimensional rotating black hole: spin-0 particles
In this work, we study the `scalar channel' of the emission of Hawking
radiation from a (4+n)-dimensional, rotating black hole on the brane. We
numerically solve both the radial and angular part of the equation of motion
for the scalar field, and determine the exact values of the absorption
probability and of the spheroidal harmonics, respectively. With these, we
calculate the particle, energy and angular momentum emission rates, as well as
the angular variation in the flux and power spectra -- a distinctive feature of
emission during the spin-down phase of the life of the produced black hole. Our
analysis is free from any approximations, with our results being valid for
arbitrarily large values of the energy of the emitted particle, angular
momentum of the black hole and dimensionality of spacetime. We finally compute
the total emissivities for the number of particles, energy and angular momentum
and compare their relative behaviour for different values of the parameters of
the theory.Comment: 24 pages, 13 figure
- …