755 research outputs found

    Astrophysical Production of Microscopic Black Holes in a Low Planck-scale World

    Full text link
    In the framework of brane-world models lowering the Planck scale to the TeV range, it has recently been pointed out that small black holes could be formed at particle colliders or by neutrinos interactions in the atmosphere. This article aims at reviewing other places and epochs where microscopic black holes could be formed : the interstellar medium and the early Universe. The related decay channels and the propagation of the emitted particles are studied to conclude that, in spite of the large creation rate for such black holes, the amount of produced particles do not conflict with experimental data. This shows, from the astronomical viewpoint, that models with large extra dimensions making the gravity scale much lower are compatible with observations.Comment: To appear in Ap

    World-making with extended gravity black holes for cosmic natural selection in the multiverse scenario

    Get PDF
    Physics is facing contingency. Not only in facts but also in laws (the frontier becoming extremely narrow). Cosmic natural selection is a tantalizing idea to explain the apparently highly improbable structure of our Universe. In this brief note I will study the creation of Universes by black holes in -string inspired- higher order curvature gravity.Comment: 5 pages, 1 figure. Proceedings of the Eleventh Marcel Grossmann Meeting on General Relativity, edited by H. Kleinert, R.T. Jantzen and R. Ruffini, World Scientific, Singapore, 200

    Holonomy corrections to the cosmological primordial tensor power spectrum

    Full text link
    Loop quantum gravity is one of the leading candidate theory to non-perturbatively quantize gravity. In this framework, holonomy corrections to the equation of propagation of gravitons in a FLRW background have been derived. We investigate the consequences of those corrections on the tensor power spectrum in de-Sitter and slow-roll inflations, for n=-1/2. Depending on the value of the Barbero-Immirzi parameter, several observational features could be expected.Comment: 5 pages, Proc. of the 43rd Rencontres de Moriond "Cosmology 2008

    Could the next generation of cosmology experiments exclude supergravity?

    Full text link
    Gravitinos are expected to be produced in any local supersymmetric model. Using their abundance prediction as a function of the reheating energy scale, it is argued that the next generation of Cosmic Microwave Background experiments could exclude supergravity or strongly favor "thermal-like" inflation models if B mode polarized radiation were detected. Galactic cosmic--ray production by evaporating primordial black holes is also investigated as a way of constraining the Hubble mass at the end of inflation. Subsequent limits on the gravitino mass and on the related grand unification parameters are derived.Comment: 8 pages, 5 figures, published version with minor changes, results unchange

    Internal structure of a Maxwell-Gauss-Bonnet black hole

    Full text link
    The influence of the Maxwell field on a static, asymptotically flat and spherically-symmetric Gauss-Bonnet black hole is considered. Numerical computations suggest that if the charge increases beyond a critical value, the inner determinant singularity is replaced by an inner singular horizon.Comment: 5 pages, 5 figures, published version with minor change

    Very high energy gamma-rays and the Hubble parameter

    Full text link
    A new method, based on the absorption of very high-energy gamma-rays by the cosmic infrared background, is proposed to constrain the value of the Hubble constant. As this value is both fundamental for cosmology and still not very well measured, it is worth developing such alternative methods. Our lower limit at the 68% confidence level is H0 > 74 km/s/Mpc, leading, when combined with the HST results, to H0 ~ 76 km/s/Mpc. Interestingly, this value, which is significantly higher than the usually considered one, is in exact agreement with other independent approaches based on baryonic acoustic oscillations and X-ray measurements. Forthcoming data from the experiments HESS-2 and CTA should help improving those results. Finally, we briefly mention a plausible correlation between absorption by the extragalactic background light and the absence of observation of gamma-ray bursts (GRBs) at very high energies.Comment: Proc. of the 12th Marcel Grossmann meeting on general relativity. 3 pages, 1 figur

    Phenomenology of black hole evaporation with a cosmological constant

    Full text link
    In this brief note, we investigate some possible experimental consequences of the de-Sitter or Anti-de-Sitter background spacetime structure for d-dimensional evaporating black holes. Possible observational signatures in Large Hadron Collider (LHC) events are considered in the framework of the Arkani-Hamed-Dimopoulos-Dvali (ADD) braneworld model. Lower bounds on the value of the bulk cosmological constant required to produce visible effects are derived thanks to a dynamical Monte-Carlo simulation. This preliminary study has to be refined by the accurate computation of the greybody factors. It opens a new way to investigate the structure of non-asymptotically flat higher-dimensional spacetimes.Comment: Proceedings of the HEP2005 conference. Related greybody factors for evaporating black holes available at : http://lpsc.in2p3.fr/ams/greybody

    Observational issues in loop quantum cosmology

    Full text link
    Quantum gravity is sometimes considered as a kind of metaphysical speculation. In this review, we show that, although still extremely difficult to reach, observational signatures can in fact be expected. The early universe is an invaluable laboratory to probe "Planck scale physics". Focusing on Loop Quantum Gravity as one of the best candidate for a non-perturbative and background-independant quantization of gravity, we detail some expected features.Comment: 75 pages, invited topical review for Classical and Quantum Gravit

    Baryonic acoustic oscillations simulations for the Large Synoptic Survey Telescope (LSST)

    Full text link
    The baryonic acoustic oscillations are features in the spatial distribution of the galaxies which, if observed at different epochs, probe the nature of the dark energy. In order to be able to measure the parameters of the dark energy equation of state to high precision, a huge sample of galaxies has to be used. The Large Synoptic Survey Telescope will survey the optical sky with 6 filters from 300nm and 1100nm, such that a catalog of galaxies with photometric redshifts will be available for dark energy studies. In this article, we will give a rough estimate of the impact of the photometric redshift uncertainties on the computation of the dark energy parameter through the reconstruction of the BAO scale from a simulated photometric catalog.Comment: 4 pages, 2 figures, 10th Rencontres de Blois proceedin

    Semiclassical scalar propagators in curved backgrounds: formalism and ambiguities

    Full text link
    The phenomenology of quantum systems in curved space-times is among the most fascinating fields of physics, allowing --often at the gedankenexperiment level-- constraints on tentative theories of quantum gravity. Determining the dynamics of fields in curved backgrounds remains however a complicated task because of the highly intricate partial differential equations involved, especially when the space metric exhibits no symmetry. In this article, we provide --in a pedagogical way-- a general formalism to determine this dynamics at the semiclassical order. To this purpose, a generic expression for the semiclassical propagator is computed and the equation of motion for the probability four-current is derived. Those results underline a direct analogy between the computation of the propagator in general relativistic quantum mechanics and the computation of the propagator for stationary systems in non-relativistic quantum mechanics. A possible application of this formalism to curvature-induced quantum interferences is also discussed.Comment: New materials on gravitationally-induced quantum interferences has been adde
    • …
    corecore