14 research outputs found

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Bedmap2: improved ice bed, surface and thickness datasets for Antarctica

    Get PDF
    We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets

    Observations of enhanced thinning in the upper reaches of Svalbard glaciers

    Get PDF
    Changes in the volume and extent of land ice of the Svalbard archipelago have been the subject of considerable research since their sensitivity to changes in climate was first noted. However, the measurement of these changes is often necessarily based on point or profile measurements which may not be representative if extrapolated to a whole catchment or region. Combining high-resolution elevation data from contemporary laser-altimetry surveys and archived aerial photography makes it possible to measure historical changes across a glacier's surface without the need for extrapolation. Here we present a high spatial resolution time-series for six Arctic glaciers in the Svalbard archipelago spanning 1961 to 2005. We find high variability in thinning rates between sites with prevalent elevation changes at all sites averaging −0.59 ± 0.04 m a−1 between 1961–2005. Prior to 1990, ice surface elevation was changing at an average rate of −0.52 ± 0.09 m a−1 which decreased to −0.76 ± 0.10 m a−1 after 1990. Setting the elevation changes against the glaciers' altitude distribution reveals that significant increases in thinning rates are occurring most notably in the glaciers' upper reaches. We find that these changes are coincident with a decrease in winter precipitation at the Longyearbyen meteorological station and could reflect a decrease in albedo or dynamic response to lower accumulation. Further work is required to understand fully the causes of this increase in thinning rates in the glaciers' upper reaches. If on-going and occurring elsewhere in the archipelago, these changes will have a significant effect on the region's future mass balance. Our results highlight the importance of understanding the climatological context of geodetic mass balance measurements and demonstrate the difficulty of using index glaciers to represent regional changes in areas of strong climatological gradient

    Sustained rapid shrinkage of Yukon glaciers since the 1957-1958 International Geophysical Year

    No full text
    surface area during the 50 years following the 1957–58 International Geophysical Year, coincident with increases in average winter and summer air temperatures and decreases in winter precipitation. Scaling these results to ice volume change, we obtain a total mass loss of 406 ± 177 Gt, which accounts for 1.13 ± 0.49 mm of global sea‐ level rise. Yukon glaciers thinned by 0.78 ± 0.34 m yr−1 water equivalent, a regional thinning rate exceeded only by mountain glaciers in Patagonia and Alaska. Our scaling analysis suggests the remaining glaciers have the capacity to contribute a further 5.04 mm to global sea‐level rise

    A new 100-m Digital Elevation Model of the Antarctic Peninsula derived from ASTER Global DEM: methods and accuracy assessment

    Get PDF
    A high resolution surface topography Digital Elevation Model (DEM) is required to underpin studies of the complex glacier system on the Antarctic Peninsula. A complete DEM with better than 200 m pixel size and high positional and vertical accuracy would enable mapping of all significant glacial basins and provide a dataset for glacier morphology analyses. No currently available DEM meets these specifications. We present a new 100-m DEM of the Antarctic Peninsula (63–70° S), based on ASTER Global Digital Elevation Model (GDEM) data. The raw GDEM products are of high-quality on the rugged terrain and coastal-regions of the Antarctic Peninsula and have good geospatial accuracy, but they also contain large errors on ice-covered terrain and we seek to minimise these artefacts. Conventional data correction techniques do not work so we have developed a method that significantly improves the dataset, smoothing the erroneous regions and hence creating a DEM with a pixel size of 100 m that will be suitable for many glaciological applications. We evaluate the new DEM using ICESat-derived elevations, and perform horizontal and vertical accuracy assessments based on GPS positions, SPOT-5 DEMs and the Landsat Image Mosaic of Antarctica (LIMA) imagery. The new DEM has a mean elevation difference of −4 m (± 25 m RMSE) from ICESat (compared to −13 m mean and ±97 m RMSE for the original ASTER GDEM), and a horizontal error of less than 2 pixels, although elevation accuracies are lower on mountain peaks and steep-sided slopes. The correction method significantly reduces errors on low relief slopes and therefore the DEM can be regarded as suitable for topographical studies such as measuring the geometry and ice flow properties of glaciers on the Antarctic Peninsula. The DEM is available for download from the NSIDC website: http://nsidc.org/data/nsidc-0516.html (doi:10.5060/D47P8W9D)

    Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points

    No full text
    Barrand, N.E., James, T.D., Murray, T., Barr, S.L. , Mills, J.P. Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points, J. Glaciol., 55(189), 109-116, 2009

    Recent High-Arctic glacial sediment redistribution: A process perspective using airborne lidar

    No full text
    Original article can be found at : http://www.sciencedirect.com/ Copyright Elsevier [Full text of this article is not available in the UHRA]Progressive glacier thinning, retreat and mass loss in the High-Arctic is increasingly exposing forefield sediments to processes of mobilisation and redistribution. In this paper, we quantify forefield sediment redistribution at Midtre LovĂ©nbreen, Svalbard, using repeat light detection and ranging (lidar) surveys conducted in 2003 and 2005 in combination with field-based observations. Average surface lowering of the forefield over the observation period identified from lidar surveys is −0.05 ma−1; and two primary areas of sediment reworking are identified: active fluvial incision of proglacial streams by ~ 2 m and lateral moraine downwasting of similar magnitude. Multivariate analysis of fluvial and climatological field data indicates that observed forefield sediment mobilisation is driven primarily by discharge forcing, but with contributions from thermoerosive processes and stochastic, autogenic sediment supply. During the period of observation, disparity between sediment loss in forefield fluvial systems as calculated from lidar data (3000–4000 × 103 kg) and monitoring of fluvial sediment load (1600–3500 × 103 kg) suggests the likely presence of significant quantities of buried ice beneath a thick debris mantle, as evidenced by field observations. Relatively uniform lowering of the moraine crest identified from our repeat lidar surveys indicates thermoerosion of an ice core. However, simple debris layer thickness modelling indicates an increase in variation of debris layer thickness at lower elevations, providing support for the assertion that moraine disintegration is driven by complex combinations of both thermal and mechanical processes. This study demonstrates the viability of using lidar in conjunction with field monitoring to better understand sedimentary deglaciation dynamics and processes, and also highlights the significance of forefield areas in controlling the sediment yield from deglaciating catchments.Peer reviewe

    Trends in Antarctic Peninsula surface melting conditions from observations and regional climate modeling

    No full text
    Multidecadal meteorological station records and microwave backscatter time-series from the SeaWinds scatterometer onboard QuikSCAT (QSCAT) were used to calculate temporal and spatial trends in surface melting conditions on the Antarctic Peninsula (AP). Four of six long-term station records showed strongly positive and statistically significant trends in duration of melting conditions, including a 95% increase in the average annual positive degree day sum (PDD) at Faraday/Vernadsky, since 1948. A validated, threshold-based melt detection method was employed to derive detailed melt season onset, extent, and duration climatologies on the AP from enhanced resolution QSCAT data during 1999–2009. Austral summer melt on the AP was linked to regional- and synoptic-scale atmospheric variability by respectively correlating melt season onset and extent with November near-surface air temperatures and the October–January averaged index of the Southern Hemisphere Annular Mode (SAM). The spatial pattern, magnitude, and interannual variability of AP melt from observations was closely reproduced by simulations of the regional model RACMO2. Local discrepancies between observations and model simulations were likely a result of the QSCAT response to, and RACMO2 treatment of, ponded surface water, and the relatively crude representation of coastal climate in the 27 km RACMO2 grid

    On the accuracy of glacier outlines derived from remote-sensing data

    Get PDF
    Deriving glacier outlines from satellite data has become increasingly popular in the past decade. In particular when glacier outlines are used as a base for change assessment, it is important to know how accurate they are. Calculating the accuracy correctly is challenging, as appropriate reference data (e.g. from higher-resolution sensors) are seldom available. Moreover, after the required manual correction of the raw outlines (e.g. for debris cover), such a comparison would only reveal the accuracy of the analyst rather than of the algorithm applied. Here we compare outlines for clean and debriscovered glaciers, as derived from single and multiple digitizing by different or the same analysts on very high- (1 m) and medium-resolution (30 m) remote-sensing data, against each other and to glacier outlines derived from automated classification of Landsat Thematic Mapper data. Results show a high variability in the interpretation of debris-covered glacier parts, largely independent of the spatial resolution (area differences were up to 30%), and an overall good agreement for clean ice with sufficient contrast to the surrounding terrain (differences ïżœ5%). The differences of the automatically derived outlines from a reference value are as small as the standard deviation of the manual digitizations from several analysts. Based on these results, we conclude that automated mapping of clean ice is preferable to manual digitization and recommend using the latter method only for required corrections of incorrectly mapped glacier parts (e.g. debris cover, shadow)
    corecore