6 research outputs found

    ANCA patients have T cells responsive to complementary PR-3 antigen

    Get PDF
    Some patients with proteinase 3 specific anti-neutrophil cytoplasmic autoantibodies (PR3-ANCA) also have antibodies that react to complementary-PR3 (cPR3), a protein encoded by the antisense RNA of the PR3 gene. To study whether patients with anti-cPR3 antibodies have cPR3-responsive memory T cells we selected conditions that allowed cultivation of memory cells but not naïve cells. About half of the patients were found to have CD4+TH1 memory cells responsive to the cPR3138-169-peptide; while only a third of the patients had HI-PR3 protein responsive T cells. A significant number of T cells from patients responded to cPR3138-169 peptide and to HI-PR3 protein by proliferation and/or secretion of IFN-γ, compared to healthy controls while there was no response to scrambled peptide. Cells responsive to cPR3138-169-peptide were not detected in MPO-ANCA patients suggesting that this response is specific. The HLADRB1* 15 allele was significantly overrepresented in our patient group and is predicted to bind cPR3138-169 peptide with high affinity. Regression analysis showed a significant likelihood that anti-cPR3 antibodies and cPR3-specific T cells coexist in individuals, consistent with an immunological history of encounter with a PR3-complementary protein. We suggest that the presence of cells reacting to potential complementary protein pairs might provide an alternative mechanism for auto-immune diseases

    A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals

    Get PDF
    Measurement of the glomerular filtration rate (GFR) is the gold standard for precise assessment of kidney function. A rapid, point-of-care determination of the GFR may provide advantages in the clinical setting over currently available assays. Here we demonstrate a proof of principle for such an approach in a pig and dogs, two species that approximate the vascular access and GFR results expected in humans. In both animal models, a sub-millimeter optical fiber that delivered excitation light and collected fluorescent emissions was inserted into a peripheral vein (dog) or central venous access (pig) by means of commercial intravenous catheters. A mixture of fluorescent chimeras of a small freely filterable reporter and large non-filterable plasma volume marker were infused as a bolus, excited by light-emitting diodes, and the in vivo signals detected and quantified by photomultiplier tubes in both species in less than 60min. Concurrent standardized 6-h iohexol plasma kidney clearances validated the accuracy of our results for both physiologic and a chronic kidney disease setting. Thus, our ratiometric technique allows for both measurement of plasma vascular volume and highly accurate real-time GFR determinations, enabling clinical decision making in real time

    A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals

    No full text
    Measurement of the glomerular filtration rate (GFR) is the gold standard for precise assessment of kidney function. A rapid, point-of-care determination of the GFR may provide advantages in the clinical setting over currently available assays. Here we demonstrate a proof of principle for such an approach in a pig and dogs, two species that approximate the vascular access and GFR results expected in humans. In both animal models, a sub-millimeter optical fiber that delivered excitation light and collected fluorescent emissions was inserted into a peripheral vein (dog) or central venous access (pig) by means of commercial intravenous catheters. A mixture of fluorescent chimeras of a small freely filterable reporter and large non-filterable plasma volume marker were infused as a bolus, excited by light-emitting diodes, and the in vivo signals detected and quantified by photomultiplier tubes in both species in less than 60 min. Concurrent standardized 6-h iohexol plasma kidney clearances validated the accuracy of our results for both physiologic and a chronic kidney disease setting. Thus, our ratiometric technique allows for both measurement of plasma vascular volume and highly accurate real-time GFR determinations, enabling clinical decision making in real time
    corecore