13,772 research outputs found

    Raman gain against a background of non-thermal ion fluctuations in a plasma

    Get PDF
    A complex stimulated Raman scattering event against a background of non-thermal ion acoustic waves in an inhomogeneous plasma is described. We obtain analytic forms for the Raman gain due to a five-wave interaction consisting of conventional three-wave Raman scattering followed by the decay of the Raman Langmuir wave into a second Langmuir wave (or a second scattered light wave) and an ion acoustic wave. Very modest levels of ion waves produce a. significant effect on Raman convective gain. A combination of plasma inhomogeneity and suprathermal ion fluctuations may offer a means for the control of Raman gain

    Mapping land cover from satellite images: A basic, low cost approach

    Get PDF
    Simple, inexpensive methodologies developed for mapping general land cover and land use categories from LANDSAT images are reported. One methodology, a stepwise, interpretive, direct tracing technique was developed through working with university students from different disciplines with no previous experience in satellite image interpretation. The technique results in maps that are very accurate in relation to actual land cover and relative to the small investment in skill, time, and money needed to produce the products

    Soil moisture detection by Skylab's microwave sensors

    Get PDF
    The author has identified the following significant results. Terrain microwave backscatter and emission response to soil moisture variations were investigated using Skylab's 13.9 GHz RADSCAT (radiometer/scatterometer) system. Data acquired on June 5, 1973, over a test site in west-central Texas indicated a fair degree of correlation with composite rainfall. The scan made was cross-track contiguous (CTC) with a pitch of 29.4 deg and no roll effect. Vertical polarization was employed with both radiometer and scatterometer. The composite rainfall was computed according to the flood prediction technique using rainfall data supplied by weather reporting stations

    Natural Gauge Hierarchy in SO(10)

    Full text link
    It is shown that a natural gauge hierarchy and doublet-triplet splitting can be achieved in SO(10) using the Dimopoulos-Wilczek mechanism. Artificial cancellations (fine-tuning) and arbitrary forms of the superpotential are avoided, the superpotential being the most general compatible with a symmetry. It is shown by example that the Dimopoulos-Wilczek mechanism can be protected against the effects of higher-dimension operators possibly induced by Planck-scale physics. Natural implementation of the mechanism leads to an automatic Peccei-Quinn symmetry. The same local symmetries that would protect the gauge hierarchy against Planck-scale effects tend to protect the axion also. It is shown how realistic quark and lepton masses might arise in this framework. It is also argued that ``weak suppression'' of proton decay can be implemented more economically than can ``strong suppression'', offering some grounds to hope (in the context of SO(10)) that proton decay could be seen at Superkamiokande.Comment: 26 pages in plain LaTeX, 5 figures available on request, BA-94-0

    Summertime Influences of Tidal Energy Advection on the Surface Energy Balance in a Mangrove Forest

    Get PDF
    Mangrove forests are ecosystems susceptible to changing water levels and temperatures due to climate change as well as perturbations resulting from tropical storms. Numerical models can be used to project mangrove forest responses to regional and global environmental changes, and the reliability of these models depends on surface energy balance closure. However, for tidal ecosystems, the surface energy balance is complex because the energy transport associated with tidal activity remains poorly understood. This study aimed to quantify impacts of tidal flows on energy dynamics within a mangrove ecosystem. To address the research objective, an intensive 10-day study was conducted in a mangrove forest located along the Shark River in the Everglades National Park, FL, USA. Forest–atmosphere turbulent exchanges of energy were quantified with an eddy covariance system installed on a 30-m-tall flux tower. Energy transport associated with tidal activity was calculated based on a coupled mass and energy balance approach. The mass balance included tidal flows and accumulation of water on the forest floor. The energy balance included temporal changes in enthalpy, resulting from tidal flows and temperature changes in the water column. By serving as a net sink or a source of available energy, flood waters reduced the impact of high radiational loads on the mangrove forest. Also, the regression slope of available energy versus sink terms increased from 0.730 to 0.754 and from 0.798 to 0.857, including total enthalpy change in the water column in the surface energy balance for 30-min periods and daily daytime sums, respectively. Results indicated that tidal inundation provides an important mechanism for heat removal and that tidal exchange should be considered in surface energy budgets of coastal ecosystems. Results also demonstrated the importance of including tidal energy advection in mangrove biophysical models that are used for predicting ecosystem response to changing climate and regional freshwater management practices

    A Storm in a "T" Cup

    Full text link
    We revisit the process of transversification and agglomeration of particle momenta that are often performed in analyses at hadron colliders, and show that many of the existing mass-measurement variables proposed for hadron colliders are far more closely related to each other than is widely appreciated, and indeed can all be viewed as a common mass bound specialized for a variety of purposes.Comment: 3 pages, 2 figures, presented by K.C. Kong at the 19th Particles and Nuclei International Conference, PANIC 2011, MIT, Cambridge, MA (July 24-29, 2011

    Higgs-Mediated tau -> 3 mu in the Supersymmetric Seesaw Model

    Full text link
    Recent observations of neutrino oscillations imply non-zero neutrino masses and flavor violation in the lepton sector, most economically explained by the seesaw mechanism. Within the context of supersymmetry, lepton flavor violation (LFV) among the neutrinos can be communicated by renormalization group flow to the sleptons and from there to the charged leptons. We show that LFV can appear in the couplings of the neutral Higgs bosons, an effect that is strongly enhanced at large tan(beta). In particular, we calculate the branching fraction for tau -> 3 mu and mu -> 3 e mediated by Higgs and find that they can be as large as 10^{-7} and 5x10^{-14} respectively. These modes, along with B^0 -> mu mu, can provide important evidence for supersymmetry before direct discovery of supersymmetric partners occurs. Along with tau -> mu gamma and mu -> e gamma, they can also provide key insights into the form of the neutrino Yukawa mass matrix.Comment: 9 pages LaTeX, 2 figures. Added a discussion of mu -> 3e and its ramifications for probing neutrino mass matrix. Also added references, fixed typos, and made one notational chang

    Design data collection with Skylab/EREP microwave instrument S-193

    Get PDF
    There are no author-identified significant results in this report

    A Simple Grand Unified Relation between Neutrino Mixing and Quark Mixing

    Full text link
    It is proposed that all flavor mixing is caused by the mixing of the three quark and lepton families with vectorlike fermions in 5 + 5-bar multiplets of SU(5). This simple assumption implies that both V_{CKM} and U_{MNS} are generated by a single matrix. The entire 3-by-3 complex mass matrix of the neutrinos M_{nu} is then found to have a simple expression in terms of two complex parameters and an overall scale. Thus, all the presently unknown neutrino parameters are predicted. The best fits are for theta_{atm} less than or approximately 40 degrees. The leptonic Dirac CP phase is found to be somewhat greater than pi radians.Comment: 10 pages, 4 figures, one table. Typos correcte

    Reducing combinatorial uncertainties: A new technique based on MT2 variables

    Get PDF
    We propose a new method to resolve combinatorial ambiguities in hadron collider events involving two invisible particles in the final state. This method is based on the kinematic variable MT2 and on the MT2-assisted-on-shell reconstruction of invisible momenta, that are reformulated as `test' variables Ti of the correct combination against the incorrect ones. We show how the efficiency of the single Ti in providing the correct answer can be systematically improved by combining the different Ti and/or by introducing cuts on suitable, combination-insensitive kinematic variables. We illustrate our whole approach in the specific example of top anti-top production, followed by a leptonic decay of the W on both sides. However, by construction, our method is also directly applicable to many topologies of interest for new physics, in particular events producing a pair of undetected particles, that are potential dark-matter candidates. We finally emphasize that our method is apt to several generalizations, that we outline in the last sections of the paper.Comment: 1+23 pages, 8 figures. Main changes in v3: (1) discussion at the end of sec. 2 improved; (2) added sec. 4.2 about the method's dependence on mass information. Matches journal versio
    • …
    corecore