1,869 research outputs found
Energy saving for air supply in a real WWTP: application of a fuzzy logic controller.
Abstract
An unconventional cascade control system, for the regulation of air supply in activated sludge wastewater treatment plants (WWTPs), was tested. The dissolved oxygen (DO) set point in the aeration tank was dynamically calculated based on effluent ammonia concentration, following a fuzzy logic based approach. First, simulations were conducted, according to the BSM2 protocol, for a general comparison with more conventional control strategies. It turned out that the effluent quality could be improved by 7–8%, based on the EQI parameter. Moreover, the aeration energy requirement could be reduced up to 13%. Subsequently, the system was installed in a full-scale WWTP. While stably complying with the ammonia effluent standard (10 mg/L), excess air supply was prevented, and a reduction of the specific power consumption (kWh/kgCODremoved) of 40–50% was recorded with respect to the previously installed PID controller (fixed DO set point)
GW quasi-particle spectra from occupied states only
We introduce a method that allows for the calculation of quasi-particle
spectra in the GW approximation, yet avoiding any explicit reference to empty
one-electron states. This is achieved by expressing the irreducible
polarizability operator and the self-energy operator through a set of linear
response equations, which are solved using a Lanczos-chain algorithm. We first
validate our approach by calculating the vertical ionization energies of the
benzene molecule and then show its potential by addressing the spectrum of a
large molecule such as free-base tetraphenylporphyrin.Comment: 4 pages, 3 figure
Quadratic response theory for spin-orbit coupling in semiconductor heterostructures
This paper examines the properties of the self-energy operator in
lattice-matched semiconductor heterostructures, focusing on nonanalytic
behavior at small values of the crystal momentum, which gives rise to
long-range Coulomb potentials. A nonlinear response theory is developed for
nonlocal spin-dependent perturbing potentials. The ionic pseudopotential of the
heterostructure is treated as a perturbation of a bulk reference crystal, and
the self-energy is derived to second order in the perturbation. If spin-orbit
coupling is neglected outside the atomic cores, the problem can be analyzed as
if the perturbation were a local spin scalar, since the nonlocal spin-dependent
part of the pseudopotential merely renormalizes the results obtained from a
local perturbation. The spin-dependent terms in the self-energy therefore fall
into two classes: short-range potentials that are analytic in momentum space,
and long-range nonanalytic terms that arise from the screened Coulomb potential
multiplied by a spin-dependent vertex function. For an insulator at zero
temperature, it is shown that the electronic charge induced by a given
perturbation is exactly linearly proportional to the charge of the perturbing
potential. These results are used in a subsequent paper to develop a
first-principles effective-mass theory with generalized Rashba spin-orbit
coupling.Comment: 20 pages, no figures, RevTeX4; v2: final published versio
Encoding argument graphs in logic
International audienceArgument graphs are a common way to model argumentative reasoning. For reasoning or computational purposes, such graphs may have to be encoded in a given logic. This paper aims at providing a systematic approach for this encoding. This approach relies upon a general, principle-based characterization of argumentation semantics
Comparison Criteria for Argumentation Semantics
Argumentation reasoning is a way for agents to evaluate a situation. Given a framework made of conflicting arguments, a semantics allows to evaluate the acceptability of the arguments. It may happen that the semantics associated to the framework has to be changed. In order to perform the most suitable change, the current and a potential new semantics have to be compared. Notions of difference measures between semantics have already been proposed, and application cases where they have to be minimized when a change of semantics has to be performed, have been highlighted. This paper develops these notions, it proposes an additional kind of difference measure, and shows application cases where measures may have to be maximized, and combined
Fermi Coordinates for Weak Gravitational Fields
A Reference is corrected. (We derive the Fermi coordinate system of an
observer in arbitrary motion in an arbitrary weak gravitational field valid to
all orders in the geodesic distance from the worldline of the observer. In flat
space-time this leads to a generalization of Rindler space for arbitrary
acceleration and rotation. The general approach is applied to the special case
of an observer resting with respect to the weak gravitational field of a static
mass distribution. This allows to make the correspondence between general
relativity and Newtonian gravity more precise.)Comment: 7 Pages, Preprint KONS-RGKU-94-04, LaTe
Genetic modification of a carcinoma with IL-4 gene increase the influx of dendridic cells relative to other cytokines
Tumor cells genetically modified with certain cytokine genes gain immunogenic properties that allow the development of systemic anti-tumor immunity. Whether different cytokines may influence infiltration of transduced tumors by dendritic cells (DC) has not been investigated. Therefore, we analyzed the C26 murine colon carcinoma genetically modified to release interleukin (IL)-2, IL-4, IL-12, granulocyte colony-stimulating-factor (CSF) or granulocyte-macrophage (GM)-CSF for immunostaining with the monoclonal antibody NDLC145 recognizing the DEC205 determinant which, on tumor sections, is virtually restricted to DC. Infiltrating leukocytes were also characterized for expression of co-stimulatory molecules like CD54, CD86 and major histocompatibility complex class II. The intratumoral DC content was dependent on the type of transduced cytokines with C26/IL-4 being the most abundant in DEC205+ cells. The effect of IL-4 in recruiting DC did not depend on the type of tumor since it was confirmed in the TSA mammary carcinoma. In comparison with C26/GM-CSF, C26/IL-4 had more B7.2+ cells but less Ia+ cells. Furthermore, the hypertrophic skin overlaying tumors producing GM-CSF showed numerous Langerhans cells stained by NDLC145 and the draining lymph nodes showed abundance and paucity of DC in C26/GM-CSF and C26/IL-4, respectively. When injected into the ear pinna, C26/GM-CSF stimulated, whereas C26/IL-4 inhibited DC-mediated priming of delayed-type hypersensitivity reaction by 2,4-dinitro-1-fluorobenzene. These findings prove that transduced cytokines differently influence DC recruitment at the tumor site and DC function in nearby tissues. Along with the other leukocytes and their secondary produced cytokines, DC create an environment in which T cells can be differently modulated. Such a phenomenon may have implications on genetic modification of tumor cells to be used as cancer vaccin
First-principles envelope-function theory for lattice-matched semiconductor heterostructures
In this paper a multi-band envelope-function Hamiltonian for lattice-matched
semiconductor heterostructures is derived from first-principles norm-conserving
pseudopotentials. The theory is applicable to isovalent or heterovalent
heterostructures with macroscopically neutral interfaces and no spontaneous
bulk polarization. The key assumption -- proved in earlier numerical studies --
is that the heterostructure can be treated as a weak perturbation with respect
to some periodic reference crystal, with the nonlinear response small in
comparison to the linear response. Quadratic response theory is then used in
conjunction with k.p perturbation theory to develop a multi-band effective-mass
Hamiltonian (for slowly varying envelope functions) in which all interface
band-mixing effects are determined by the linear response. To within terms of
the same order as the position dependence of the effective mass, the quadratic
response contributes only a bulk band offset term and an interface dipole term,
both of which are diagonal in the effective-mass Hamiltonian. Long-range
multipole Coulomb fields arise in quantum wires or dots, but have no
qualitative effect in two-dimensional systems beyond a dipole contribution to
the band offsets.Comment: 25 pages, no figures, RevTeX4; v3: final published versio
Phonon softening and superconductivity in tellurium under pressure
The phonon dispersion and the electron-phonon interaction for the -Po
and the bcc high pressure phases of tellurium are computed with
density-functional perturbation theory. Our calculations reproduce and explain
the experimentally observed pressure dependence of the superconducting critical
temperature (T) and confirm the connection between the jump in
T and the structural phase transition. The phonon contribution to the
free energy is shown to be responsible for the difference in the structural
transition pressure observed in low and room temperature experiments.Comment: Revtex, 4 Postscript figures, to appear in Phys. Rev. Let
- …