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2 LIPADE, Université Paris Descartes, Paris, France
jean-guy.mailly@parisdescartes.fr

Abstract. Argumentation reasoning is a way for agents to evaluate a
situation. Given a framework made of conflicting arguments, a semantics
allows to evaluate the acceptability of the arguments. It may happen that
the semantics associated to the framework has to be changed. In order
to perform the most suitable change, the current and a potential new
semantics have to be compared. Notions of difference measures between
semantics have already been proposed, and application cases where they
have to be minimized when a change of semantics has to be performed,
have been highlighted. This paper develops these notions, it proposes an
additional kind of difference measure, and shows application cases where
measures may have to be maximized, and combined.

1 Introduction

Argumentation is a reasoning model which has proved useful for agents in many 
contexts (e.g. decision making [3], negociation [2], persuasion [27]). Abstract 
argumentation frameworks (AFs) are classically associated with a semantics 
which allows to evaluate arguments’ statuses, determining sets of jointly accept-
able arguments called extensions [4,18].

In [7,8], a method to modify an AF in order to satisfy a constraint (a given 
set of arguments should be an extension, or at least included in an extension) 
is defined; this process is called extension enforcement. The authors distinguish 
between conservative enforcement when the semantics does not change (only the 
AF changes) and liberal enforcement when the semantics changes. A first study 
of semantic change in a situation of enforcement has recently been conducted 
in [17]: it shows how to minimize the changes to perform on an AF in order to 
enforce an extension, by changing the semantics, for a new one which is not too 
“different” from the current one.

A change of the semantics may be necessary for other reasons, for instance, 
for computational purposes: if a given semantics was appropriate at some point 
in a certain context for some AF, one may imagine that changes over time on 
the structure of the AF (number of arguments, of attacks, structure of cycles) 
may make this semantics too “costly” to compute. It may then be interesting to
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pick up another semantics to apply to the AF, possibly not too dissimilar to the
former on its acceptability results, but quite dissimilar regarding computational
complexity.

The other way round, in contexts like decision or deliberation, a given seman-
tics may be interesting from a computational point of view, but the results that it
returns may be found for instance too restrictive, in the sense that, if the agents
agree on the extensions that it returns, they would like to have more options,
as many as possible, including the ones which have been returned. It may then
be interesting to change the semantics, for a new one which is not too dissimilar
in complexity to the former, but which extends the set of extensions. Difference
measures between semantics, to quantify how much a semantics is dissimilar to
another one, allow to define different minimality and maximality criteria. Such
criteria can be used and combined to select the new semantics among several
options when a semantic change is required.

This paper recalls and presents several sensible ways to quantify the difference
between two semantics, depending on:

– the computational complexity of semantics;
– the properties which characterize the semantics;
– the relations between semantics;
– the acceptance statuses of arguments the semantics lead to in a specific AF.

The first measure is new; the last three measures have been proposed in [16],
and illustrated on a number of semantics; they are developed here, proofs of
the properties that they satisfy (whether they are distances, semi-distances or
pseudo-distances) are given, and additional semantics are considered.

2 Background Notions

An Argumentation Framework (AF) [18] is a directed graph 〈A,R〉 where the
nodes in A represent abstract entities called arguments and the edges in R rep-
resent attacks between arguments. (ai, aj) ∈ R means that ai attacks aj ; ai is
called an attacker of aj . Figure 1 gives an example of an argumentation frame-
work.

a1 a2 a3 a4 a5

a6

a7

Fig. 1. The AF F1



We say that an argument ai (resp. a set of arguments S) defends the argument
aj against its attacker ak if ai (resp. any argument in S) attacks ak. The range
of a set of arguments S w.r.t. R, denoted S+

R , is the subset of A which contains
S and the arguments attacked by S; formally S+

R = S ∪ {aj | ∃ai ∈ S s.t.
(ai, aj) ∈ R}. Different semantics allow to determine which sets of arguments
can be collectively accepted [6,12,13,18–20,29].

Definition 1. Let F = 〈A,R〉 be an AF. A set of arguments S ⊆ A is

– conflict-free w.r.t. F if �ai, aj ∈ S s.t. (ai, aj) ∈ R;
– admissible w.r.t. F if S is conflict-free and S defends each of its arguments

against all of their attackers;
– a naive extension of F if S is a maximal conflict-free set (w.r.t. ⊆);
– a complete extension of F if S is admissible and S contains all the arguments

that it defends;
– a preferred extension of F if S is a maximal complete extension (w.r.t. ⊆);
– a stable extension of F if S is conflict-free and S+

R = A;
– a grounded extension of F if S is a minimal complete extension (w.r.t. ⊆);
– a stage extension of F if S is conflict-free and there is no conflict-free T such

that S+
R ⊂ T+

R ;
– a semi-stable extension of F if S is admissible and there is no admissible T

such that S+
R ⊂ T+

R ;
– an ideal set of F if S is admissible and S is included in each preferred exten-

sion;
– an ideal extension of F if S is a maximal (w.r.t. ⊆) ideal set of F ;
– an eager extension of F if S is a maximal (w.r.t. ⊆) admissible set that is a

subset of each semi-stable extension.

These semantics are denoted, respectively, cf, adm, na, co, pr, st, gr, stg, sem, is,
id, eg. For each σ of them, Extσ(F ) denotes the set of σ-extensions of F .

Let us recall the definition of usual decision problems for argumentation.

Definition 2. Let F = 〈A,R〉 be an AF and σ a semantics.

Credσ An argument ai ∈ A is said to be credulously accepted by F w.r.t. σ if
∃E ∈ Extσ(F ) s.t. ai ∈ E.

Skeptσ An argument ai ∈ A is said to be skeptically accepted by F w.r.t. σ if
∀E ∈ Extσ(F ), ai ∈ E.

Existσ F satisfies the non-trivial existence w.r.t. σ if F admits at least one non-
empty σ extension.

The set of credulously (resp. skeptically) accepted arguments in F w.r.t. σ is
denoted crσ(F ) (resp. skσ(F )).

Example 1. Let us consider the argumentation framework F1 given at Fig. 1,
and let us illustrate some of the semantics, and related decision problems.



– Extadm(F1) = {∅, {a1}, {a4}, {a4, a6}, {a1, a4, a6}, {a1, a3}, {a1, a4}},
– Extst(F1) = {{a1, a4, a6}},
– Extpr(F1) = {{a1, a4, a6}, {a1, a3}},
– Extco(F1) = {{a1, a4, a6}, {a1, a3}, {a1}},
– Extgr(F1) = {{a1}}.
a1 is skeptically accepted in F1 w.r.t. the stable, preferred, complete and grounded
semantics. a4 is credulously accepted in F1 w.r.t. the preferred and complete
semantics, but it is not w.r.t. the grounded semantics.

Table 1 gives the complexity class of these decision problems1. Results come
from [14,15,18,20–23,25]. We suppose that the reader is familiar with the basic
notions of complexity. Otherwise, see [28] for instance. Computation of one exten-
sion and enumeration of all the extensions are not decision problems, so their
complexity cannot be evaluated through the polynomial hierarchy as we do for
credulous and skeptical acceptance. But the computational hardness of these
functional problems can all the same be estimated. Indeed, the complexity of
skeptical acceptance can be seen as a lower bound for the complexity of the
enumeration of extensions, and the complexity of the non-trivial existence can
be seen as a lower bound of the computation of an extension.

Table 1. Complexity of Inference Problems for the Usual Semantics. C−c (resp. C−h)
means that the considered decision problem is complete (resp. hard) for the complexity
class C.

σ Credσ Skeptσ Existσ

cf Trivial P Trivial

adm NP − c Trivial NP − c

na P P L

co NP − c P NP − c

pr NP − c ΠP
2 − c NP − c

st NP − c coNP−c NP − c

gr P P P

stg ΣP
2 − c ΠP

2 − c L

sem ΣP
2 − c ΠP

2 − c NP−c

id coNP−h coNP−h P

eg ΠP
2 − c ΠP

2 − c P

In order to compare, in the following section, the semantics, and propose
measures of their differences, let us introduce a useful notation: given two sets
X,Y , XΔY is the symmetric difference between X and Y . Let us recall also the
definition of a distance and of an aggregation function.
1 Up to our knowledge, the complexity class of Cred is, Skept is and Exist is has not yet

been determined.



Definition 3. Given a set E, a mapping d from E × E to R+ is

– a pseudo-distance if it satisfies weak coincidence, symmetry and triangular
inequality;

– a semi-distance if it satisfies coincidence and symmetry;
– a distance if it satisfies coincidence, symmetry and triangular inequality.

weak coincidence ∀x ∈ E, d(x, x) = 0;
coincidence ∀x, y ∈ E, d(x, y) = 0 iff x = y;
symmetry ∀x, y ∈ E, d(x, y) = d(y, x);
triangular inequality ∀x, y, z ∈ E, d(x, y) + d(y, z) ≥ d(x, z).

Definition 4. An aggregation function is a function ⊗ which associates a non-
negative real number to every finite tuple of non-negative numbers, and which
satisfies:

non-decreasingness if y ≤ z then ⊗(x1, . . . , y, . . . , xn) ≤ ⊗(x1, . . . , z, . . . , xn);
minimality ⊗(x1, . . . , xn) = 0 iff x1 = · · · = xn = 0;
identity ∀x ∈ R+,⊗(x) = x.

For instance, we will use the sum
∑

as an aggregation function.

3 Complexity-Based Difference Measures

As mentioned in the introduction, the acceptability semantics may have to be
changed because of the computational complexity of the reasoning tasks an agent
is involved into. Indeed, depending on which kind of reasoning is actually used
by the agent (computation of one extension, enumeration of all the extensions,
credulous or skeptical acceptance), the use of a given semantics σ1 may lead to
a higher complexity than another semantics σ2, as depicted in Table 1.

If the agent needs to change her semantics for practical purpose, it seems
that she will choose the semantics which allows her to have the lowest possi-
ble complexity for her main reasoning task. For instance, if she uses skeptical
acceptance frequently, and if she is currently using the preferred semantics, it
is interesting to select a new semantics such that the complexity of skeptical
acceptance is minimal. When we consider the set of semantics which select only
complete extensions, the possible new semantics are {co, gr}. To choose among
these two, the agent can use another criterion such as minimal change based on
another of the measures defined here.

In some cases, the agent can be obliged to change her semantics to another
one which has a higher complexity; it is not desirable in general, but it can
be mandatory to satisfy a given constraint. In this case, if several options are
possible, a notion of minimality can be used. It consists now in a minimal increase
of the complexity. We formalize it by defining a difference measure between
reasoning tasks, where such a task is parametrized by the semantics and the
specific decision problem.



Definition 5. Let S = {σ1, . . . , σn} be a set of semantics, and T = {τ1, . . . , τm}
be a set of reasoning tasks. We define C = {C(τσ) | τ ∈ T, σ ∈ S}, where C(τσ)
denotes the complexity class which characterizes the decision problem τσ.

The complexity graph on S and T is Comp(S, T ) = 〈C, I〉 with I ⊆ C × C
defined by ∀c1, c2 ∈ C, (c1, c2) ∈ I iff c1 ⊂ c2 and � ∃c3 ∈ C such that c3 �= c1, c3 �=
c2 and c1 ⊂ c3 ⊂ c2.2

The difference measure δS
T between decision problems τσ1 and τ ′

σ2
is the non-

negative integer δS
T (τσ1 , τ

′
σ2

) which is the length of the shortest non-oriented path
between C(τσ1) and C(τ ′

σ2
) in Comp(S, T ).

In general, the complexity-based difference measure are not distances, they do
not satisfy coincidence. They satisfy weak coincidence and symmetry.

Example 2. Let us consider the classical Dung’s semantics S = {co, pr, st, gr}
and the reasoning tasks T = {Credσ,Skeptσ,Existσ}. As we see in Table 1, C =
{P,NP, coNP,ΠP

2 }. The corresponding graph Comp(S, T ) is given in Fig. 2.

Fig. 2. Complexity Graph Comp(S, T )

Then, for instance, δS
T (Credgr,Credco) = 1 and δS

T (Skeptgr,Skeptpr) = 2. As
soon as two decision problems have the same complexity, the measure of their
difference is 0 (for instance, δS

T (Credst,Credco) = 0); this explains why δS
T is not

a distance.

Minimality of this complexity difference measure can be used when all the
alternatives have a higher complexity than the previous one. For instance, if the
agent is forced to change her semantics from gr to another one because she needs
to be able to consider several solutions to her problem (which means that she
needs to obtain several extensions), then she can choose the complete semantics
when skeptical acceptance is important for her, because δS

T (skeptgr, skeptco) = 0.

4 Property-Based Difference Measures

Semantics can be compared respectively to the set of properties that characterize
them. Such a characterization can be defined as follows.

Definition 6 [16]. A set of properties P characterizes a semantics σ if for each
AF F ,
2 Under the usual assumptions about inclusions between complexity classes.



1. each σ-extension of F satisfies each property from P,
2. each set of arguments which satisfies each property from P is a σ-extension

of F ,
3. P is a minimal set (w.r.t ⊆) among those which satisfy 1. and 2.

P rop(σ) denotes the set of properties that characterizes a semantics σ.

[16] points out a set of properties, and shows how each semantics can be charac-
terized given this set. Absolute properties, which concern only a set of arguments
by itself (Definition 7) are distinguished from relative properties, which concern
a set of arguments with respect to other sets of arguments (Definition 8).

Definition 7 [16]. Given an AF F = 〈A,R〉, a set of arguments S satisfies

– conflict-freeness if S is conflict-free;
– acceptability if S defends itself against each attacker;
– reinstatement if S contains all the arguments that it defends;
– complement attack if each argument in A\S is attacked by S.

Definition 8 [16]. Given an AF F = 〈A,R〉 and a set of properties P, a set of
arguments S satisfies

– P-maximality if S is maximal (w.r.t. ⊆) among the sets of arguments satis-
fying P;

– P-minimality if S is minimal (w.r.t. ⊆) among the sets of arguments satis-
fying P;

– P-inclusion if S is included in each set of arguments satisfying P;
– P-R-maximality if S has a maximal range (w.r.t. ⊆) among the sets of argu-

ments satisfying P.

It can be noticed that, by definition, if a set S satisfies P-maximality (resp.
P-minimality, P-R-maximality), then S satisfies P.

A characterization of different semantics, that follows from the previous def-
initions, has been established in [16]; Proposition 1 recalls this characterization,
and extends it to ideal sets, ideal and eager semantics.

Proposition 1. The extension-based semantics considered in this paper can be
characterized as follows:

– Prop(cf) = {conflict-freeness}.
– Prop(adm) = Prop(cf) ∪ {acceptability}.
– Prop(na) = Prop(cf)-maximality.
– Prop(co) = Prop(adm) ∪ {reinstatement}.
– Prop(gr) = Prop(co)-minimality.
– Prop(pr) = Prop(adm)-maximality.
– Prop(sem) = Prop(adm)-R-maximality.
– Prop(stg) = Prop(cf)-R-maximality.
– Prop(st) = Prop(cf) ∪ {complement attack}.
– Prop(is) = Prop(adm) ∪ {Prop(pr)-inclusion}.



– Prop(id) = Prop(is)-maximality.
– Prop(eg) = Prop(pr) ∪ {Prop(sem)-inclusion}.
Let us notice that we can consider other properties, and give alternative charac-
terizations of the semantics (see [9,10] for contributions in this sense). Even if the
value of the difference between two semantics (obviously) depends of the chosen
characterizations, the general definition of property-based difference measures is
the same whatever the characterizations.

The intuition which lead to define the characterization as the minimal set
of properties is related to computational issues. Indeed, computing some rea-
soning tasks related to the semantics thanks to the semantics characteriza-
tion can be done more efficiently with this definition. For instance, to deter-
mine whether a set of arguments is a stable extension of a given AF, checking
the satisfaction of conflict-freeness and complement attack proves enough. For
instance, Prop(adm)-maximality may be added in the characterization of the
stable semantics, but computing the result of our problem would then be harder.

A weight can be associated to each property, depending on the importance
of the property in a certain context.

Definition 9 [16]. Let P be a set of properties. Let w be a function which maps
each property p ∈ P to a strictly positive real number w(p). Given σ1, σ2 two
semantics such that Prop(σ1) ⊆ P and Prop(σ2) ⊆ P, the property-based dif-
ference measure δw

prop between σ1 and σ2 is defined as:

δw
prop(σ1, σ2) =

∑

pi∈Prop(σ1)ΔProp(σ2)

w(pi)

The specific property-based difference measure defined when all the properties
have the same importance is as follows.

Definition 10 [16]. Given two semantics σ1, σ2, the property-based difference
measure δprop is defined by δprop(σ1, σ2) = |Prop(σ1)ΔProp(σ2)|.
Example 3. Let us suppose that the initial semantics is the admissible one.

– When δprop is considered, naive and preferred semantics are “equivalent”,
since δprop(adm, na) = δprop(adm, pr) = 3.

– With a weighted measure δw
prop such that w(Prop(cf)-maximality) = 1 and

w(Prop(adm)-maximality) = 2, the two semantics are no more equivalent,
since δprop(adm, na) < δprop(adm, pr).

Proposition 2 [16]. Given a set of semantics S, the property-based measures
defined on S are distances.

5 Relation-Based Difference Measures

Most of the usual semantics are related according to some notions. For instance,
it is well-known that each preferred extension of an AF is also a complete exten-
sion of it, and the grounded extension is also complete, but in general it is not a



preferred extension. The preferred semantics may thus be seen closer to the com-
plete semantics, than to the grounded semantics. This idea has been formalized
with the notion of semantics relation graph.

Definition 11 [16]. Let S = {σ1, . . . , σn} a set of semantics. A semantics rela-
tion graph on S is defined by Rel(S) = 〈S,D〉 with D ⊆ S × S.

This abstract notion of relation graph, where the nodes are semantics, can be
instantiated with the inclusion relation between the extensions of an AF.

Definition 12 [16]. Let S = {σ1, . . . , σn} a set of semantics. The extension
inclusion graph of S is defined by Inc(S) = 〈S,D〉 with D ⊆ S × S such that
(σi, σj) ∈ D if and only if:

– for each AF F , Extσi
(F ) ⊆ Extσj

(F );
– there is no σk ∈ S (k �= i, k �= j) such that for each AF F , Extσi

(F ) ⊆
Extσk

(F ) and Extσk
(F ) ⊆ Extσj

(F ).

This idea has been discussed in [4], but the notion of relation between semantics
had not been formalized before [16].

Example 4. For instance, when S = {co, pr, st, gr, stg, sem, is, id, eg, adm,
cf, na}, Inc(S) is the graph given at Fig. 3.

cf naadm

co

pr sem st

gr

is

id stg

eg

Fig. 3. Extension Inclusion Graph Inc(S)

A family of difference measures between semantics which is based on the
semantics relation graphs has been defined, to measure what it costs for an
agent to change her semantics.

Definition 13 [16]. Given S a set of semantics, a S- relation difference mea-
sure is the mapping from two semantics σ1, σ2 ∈ S to the non-negative integer
δRel,S(σ1, σ2) which is the length of the shortest non-oriented path between σ1 and
σ2 in Rel(S). In particular, the S-inclusion measure is the length of the shortest
non-oriented path between σ1 and σ2 in Inc(S), denoted by δInc,S(σ1, σ2).

Example 5. Given two semantics σ1 and σ2 which are neighbours in the graph
given at Fig. 3, the difference measure δInc,S(σ1, σ2) is obviously 1. Otherwise,
if several paths allow to reach σ2 from σ1, then the difference is the length of



the minimal one. For instance, δInc,S(st, cf) = 3 since the minimal path is
st → stg → na → cf , but other paths exist (for instance, st → sem → pr →
co → adm → cf). Since here the question is to define the difference between
semantics, the possibility to obtain several minimal paths (for instance, there are
two minimal paths between the ideal and admissible semantics: id → is → adm
and id → co → adm) is not problematic.

Proposition 3 [16]. The S-inclusion difference measure is a distance.

The relation graph can be instantiated with other relations between semantics.
The skepticism relation studied in [5] would be an appropriate candidate. The
graph resulting from the intertranslatability relationship of semantics [24] may
also be considered. Such instantiations would require a deeper investigation.

It can be noticed that, for any instantiation of the relation graph as defined
above, which is absolute, that is, independent of any specific AF, a relative
version can also be defined. In this case, the edges in the graph would depend
on the relations for a given AF; the initial proposal considers the relations which
are true for any AF. Such AF-based relation graph may also lead to interesting
difference measures, which would require investigation as well.

6 Acceptance-Based Difference Measures

In line with the remarks at the end of the last section, regarding absoluteness
(that is, independence of the measure from any specific situation or AF) and
relativity (dependence on a given AF) of difference measures, a family of relative
measures is presented in this section. Now, the difference between semantics
depends on the acceptance status of arguments in a given AF, w.r.t. the different
semantics in consideration.

The first acceptance-based measure quantifies the difference between the σ1-
extensions and the σ2-extension of the AF to quantify the difference between σ1

and σ2.

Definition 14 [16]. Let F be an AF, d be a distance between sets of arguments,
and ⊗ be an aggregation function. The F -d-⊗-extension-based difference mea-
sure δd,⊗

F is defined by δd,⊗
F (σ1, σ2) = ⊗ε∈Extσ1 (F ) minε′∈Extσ2 (F ) d(ε, ε′).

Proposition 4. In general, the extension-based difference measures are not dis-
tances, they do not satisfy coincidence, symmetry.

Example 6. For instance, we consider the Hamming distance between sets of
arguments, defined as dH(s1, s2) = |s1Δs2|. Now, we define the F1-dH-

∑
-

extension-based difference measure δ
dH ,

∑

F from dH and the AF F1 given at Fig. 1.
Its set of stable extensions is Extst(F1) = {{a1, a4, a6}}.

When measuring the difference between the stable semantics and the other
classical Dung’s semantics, we obtain:



– δ
dH ,

∑

F1
(st, gr) = 2 since Extgr(F1) = {{a1}};

– δ
dH ,

∑

F1
(st, pr) = 0 since Extpr(F1) = {{a1, a3}, {a1, a4, a6}}; on the opposite,

δdH

F1
(pr, st) = 3;

– δ
dH ,

∑

F1
(st, co) = 0 since Extco(F1) = {{a1}, {a1, a3}, {a1, a4, a6}}.

The following result shows that the restriction of the extension-based measure
to some particular sets of semantics leads to satisfy the coincidence property.

Proposition 5. For a given F and a given set of semantics S = {σ1, . . . , σn},
if for all σi, σj ∈ S such that σi �= σj, Extσi

(F ) � Extσj
(F ), then the extension-

based measure δ
dH ,

∑

F satisfies coincidence.

Even in this case, the measure does no satisfy all the properties of distances.
However, we can use the intuition behind this measure to define another one.

Definition 15 [16]. Let F be an AF, d be a distance between sets of
arguments, and ⊗ be an aggregation function. The symmetric F -d-⊗-
extension-based difference measure δd,⊗

F,sym is defined by δd,⊗
F,sym(σ1, σ2) =

max(δd,⊗
F (σ1, σ2), δ

d,⊗
F (σ2, σ1)).

This measure satisfies the distance properties under some conditions.

Proposition 6 [16]. For a given F and a given set of semantics S =
{σ1, . . . , σn}, if for all σi, σj ∈ S such that σi �= σj, Extσi

(F ) �= Extσj
(F ),

then the symmetric extension-based measure δ
dH ,

∑

F,sym is a semi-distance.

As suggested in [16], we can also use the set of skeptically (resp. credulously)
accepted arguments instead of the whole set of extensions to define a difference
measure between semantics. We propose here a definition of such measures.

Definition 16. Given F an AF, d a distance between sets of arguments, and
S a set of semantics, the F -d-skeptical acceptance difference measure δd

F,sk is
defined, for any σ1, σ2 ∈ S, by

δd
F,sk(σ1, σ2) = d(skσ1(F ), skσ2(F ))

The F -d-credulous acceptance difference measure δd
F,sk is defined, for any

σ1, σ2 ∈ S, by
δd
F,cr(σ1, σ2) = d(crσ1(F ), crσ2(F ))

If two semantics lead to the same set of credulously (resp. skeptically) accepted
arguments, then these measures cannot distinguish between these semantics.
Other properties are satisfied.

Proposition 7. Given F and AF and d a distance, the F -d-skeptical accep-
tance difference measure and the F -d-credulous acceptance difference measure
are pseudo-distances.



7 Obtaining Comparison Criteria

In the context of a semantic change, the difference measures can be used to
define different minimality or maximality criteria. With σ the initial semantics,
and S the set of options for the new semantics, the new semantics should be
σ′ ∈ S such that, given δ the chosen measure:

– ∀σ′′ ∈ S, δ(σ, σ′) ≤ δ(σ, σ′′) to define a minimality criteria denoted minδ,σ,
– ∀σ′′ ∈ S, δ(σ, σ′) ≥ δ(σ, σ′′) to define a maximality criteria denoted maxδ,σ.

Given σ a semantics and S a set of semantics, minδ,σ(S) = {σi ∈ S | ∀σj ∈
S, δ(σ, σi) ≤ δ(σ, σj)} is the subset of S of semantics which minimize the criterion
minδ,σ; the counterpart for maximality criteria is maxδ,σ(S) = {σi ∈ S | ∀σj ∈
S, δ(σ, σi) ≥ δ(σ, σj)}.

A single criteria may not be enough to compare, or distinguish between, some
semantics, as shown in the examples in the Introduction. Combining criteria may
allow an agent to do so. It can be noticed that the order of application of the
different criteria may then lead to different results.

Definition 17. Let X = 〈χ1, . . . , χn〉 a vector of (minimality or maximality)
criteria. Let σ be a semantics, and S a set of semantics. The X-based semantic
change selection function is defined by χX(σ,S) = χn

X(σ,S)
with χn

X as follows:

γ1
X(σ,S) = χ1(S)

γk
X(σ,S) = χk(γk−1

X (σ,S))

Let us notice that this definition is general enough to encompass any difference
measure yet to be defined.

Example 7. Let σ = st be the current semantics. A change of semantics has
to be done. The reasoning task to complete by the agent is credulous reasoning
(Credσ). The candidate new semantics are S = {pr, co, eg}. The new semantics
must be as close as possible in terms of computational complexity to the current
one, but it should contain not only the current results, but as many results as
possible (the agent wants as many options as possible). Hence, the vector of crite-
ria to be considered is X = 〈minδS

Cred,σ,maxδInc,S ,σ〉. Then, by first minimizing
the complexity-based difference measure, the only semantics to be considered are
pr, co. By maximizing then the inclusion measure, the X-based semantic change
selection function returns co.

8 Conclusion

This paper presents several ways to quantify the difference between extension-
based semantics, building on [16]. Some of them are absolute (they only depend
on the semantics), while the other ones are relative (they depend on the consid-
ered AF). Let us mention the fact that there is no general relation between these



difference measures; for instance we have seen on several examples that it may
occur that δ1(σ1, σ2) > δ1(σ1, σ3) while δ2(σ1, σ2) < δ2(σ1, σ3). When a seman-
tic change occurs, this permits the agent to use some very different criteria to
select the new semantics, depending on which difference measures make sense in
the context of her application. The minimization, or the maximization of these
measures, and their combinations, permit to express many comparison criteria.

Let us notice that only the relation-based and property-based measures are
distances, other methods failing in general to satisfy the distance properties,
which seem to be desirable to quantify the difference between objects. However,
the skeptical and credulous acceptance difference measures are pseudo-distances.
Further study could lead to identify the necessary conditions that a set of seman-
tics must satisfy to ensure that these are distances.

Table 2. Summary of properties satisfied by the measures

δST δw
prop δInc,S δ

d,
∑

F δ
d,

∑

F,sym δd
F,sk δd

F,cr

WC � � � ◦ � � �
Co × � � × ◦ × ×
Sym � � � × � � �
TI � � � �

Table 2 depicts the properties satisfied by our measures. WC, Co, Sym and TI
stand respectively for weak coincidence, coincidence, symmetry and triangular
inequality. A � symbol means that the property is always satisfied, and × means
that it is not satisfied in general. ◦ means that the property is satisfied under
some additional assumption.

Several tracks can be considered for future works. We have noticed that we
can order semantics, with respect to an initial semantics σ and a measure δ:
σ1 ≤σ,δ σ2 if and only if δ(σ, σ1) ≤ δ(σ, σ2). In this case, we can investigate
the relation of the orderings defined by different measures. For instance, if some
pairs (σ, δ1) and (σ, δ2) lead to the same ordering, then we can choose to use the
measure which is the least expensive one to compute among δ1 and δ2.

We also plan to define a similar notion of difference measures for labelling-
based semantics [4], and for ranking-based semantics [1,11,26]. In this last con-
text, we need to determine whether some relevant properties characterize the
ranking which is used to evaluate arguments, or to determine meaningful notions
of difference between the rankings.

Finally, we will investigate more in depth the question which is mentioned in
the introduction: using (minimal) semantic change in argumentation dynamics
scenarios. In particular, [17] has shown that semantic change can be used to
guarantee minimal change on the attack relation when performing an extension
enforcement. We will investigate this question in other scenarios.
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A Proofs

Proof (Proof of Proposition 2). From our definition of characterizations, the
mapping that associates a semantics σ to a set of properties Prop(σ) guarantees
that a semantics cannot be associated with two different sets of properties, and
a same set of properties cannot correspond to different semantics.

The weighted sum on sets of properties obviously defines a distance (in par-
ticular, when all weights are identical, we obtain the well-known Hamming dis-
tance; other weights just define generalization of Hamming distance). Since we
can identify the semantics to the sets of properties, δw

prop is a distance.

Proof (Proof of Proposition 3). From the definition of the Σ-relation graph,

– the difference between σ1 and σ2 is 0 iff they are the same node of the graph
(i.e. σ1 = σ2), so coincidence is satisfied;

– the shortest path between two semantics σ1, σ2 has the same length whatever
the direction of the path (from σ1 to σ2, or vice-versa), since we do not
consider the direction of arrows, so symmetry is satisfied;

– the shortest path between σ1 and σ3 is at worst the concatenation of the
paths (σ1, . . . , σ2) and (σ2, . . . , σ3), or (if possible) a shorter one, so triangular
inequality is satisfied.

Proof (Proof of Proposition 4). Example 6 gives the counter-examples for coin-
cidence and symmetry.

Proof (Proof of Proposition 5). We consider a given AF F and a set of semantics
Σ = {σ1, . . . , σn}, such that for all σi, σj ∈ Σ with σi �= σj , Extσi

(F ) �
Extσn

(F ).
Obviously, for any semantics σi, δ

dH ,
∑

F (σi, σi) = 0. Now, let us assume
the existence of two semantics σi, σj ∈ Σ such that δ

dH ,
∑

F (σi, σj) =
0. We just rewrite this, following the definition of the measure:∑

ε∈Extσi
(F ) minε′∈Extσj

(F ) dH(ε, ε′) = 0. Since all distances are non-negative
number, if the sum is equal to zero it means that ∀ε ∈ Extσi

(F ),
minε′∈Extσj

(F ) dH(ε, ε′) = 0. Because of the properties of the Hamming distance,
it means that ε ∈ Extσj

, and so Extσi
⊆ Extσj

. From our starting assumption,
we deduce that σi = σj .

Proof (Proof of Proposition 6). From the definition of the measure,
δ

dH ,
∑

F,sym(σ1, σ2) = 0 iff Extσ1(F ) = Extσ2(F ). Under our assumptions, this
is possible only if σ1 = σ2. The other direction is trivial, so coincidence
is satisfied. Symmetry is obviously satisfied, since σ1, σ2 can be inverted in
max(δd,⊗

F (σ1, σ2), δ
d,⊗
F (σ2, σ1)).



Proof (Proof of Proposition 7). Weak coincidence and symmetry are trivial from
the definition of the measures.

δd
F,sk(σ1, σ2) + δd

F,sk(σ2, σ3) = d(skσ1(F ), skσ2(F )) + d(skσ2(F ), skσ3(F ))
≥ d(skσ1(F ), skσ3(F )) = δd

F,sk(σ1, σ3)

The same reasoning apply for the credulous acceptance measure. So both satisfy
the triangular inequality. Coincidence is not satisfied by the skeptical acceptance
measure. For instance, for each AF F , ∅ ∈ Extcf (F ) and ∅ ∈ Extadm(F ), so
skcf (F ) = skadm(F ) = ∅, and so δd

F,skep(cf, adm) = 0. The same conclusion
holds as soon as two semantics yield the same skeptically or credulously accepted
arguments.
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