27 research outputs found

    Structure of human Fe–S assembly subcomplex reveals unexpected cysteine desulfurase architecture and acyl-ACP–ISD11 interactions

    Get PDF
    In eukaryotes, sulfur is mobilized for incorporation into multiple biosynthetic pathways by a cysteine desulfurase complex that consists of a catalytic subunit (NFS1), LYR protein (ISD11), and acyl carrier protein (ACP). This NFS1-ISD11-ACP (SDA) complex forms the core of the iron-sulfur (Fe-S) assembly complex and associates with assembly proteins ISCU2, frataxin (FXN), and ferredoxin to synthesize Fe-S clusters. Here we present crystallographic and electron microscopic structures of the SDA complex coupled to enzyme kinetic and cell-based studies to provide structure-function properties of a mitochondrial cysteine desulfurase. Unlike prokaryotic cysteine desulfurases, the SDA structure adopts an unexpected architecture in which a pair of ISD11 subunits form the dimeric core of the SDA complex, which clarifies the critical role of ISD11 in eukaryotic assemblies. The different quaternary structure results in an incompletely formed substrate channel and solvent-exposed pyridoxal 5'-phosphate cofactor and provides a rationale for the allosteric activator function of FXN in eukaryotic systems. The structure also reveals the 4'-phosphopantetheine-conjugated acyl-group of ACP occupies the hydrophobic core of ISD11, explaining the basis of ACP stabilization. The unexpected architecture for the SDA complex provides a framework for understanding interactions with acceptor proteins for sulfur-containing biosynthetic pathways, elucidating mechanistic details of eukaryotic F e-S cluster biosynthesis, and clarifying how defects in Fe-S cluster assembly lead to diseases such as Friedreich's ataxia. Moreover, our results support a lock-and-key model in which LYR proteins associate with acyl-ACP as a mechanism for fatty acid biosynthesis to coordinate the expression, Fe-S cofactor maturation, and activity of the respiratory complexes. Keywords: LYR; ACP; iron-sulfur cluster; PLP; frataxi

    Methylation of Carbon Monoxide Dehydrogenase from Clostridium thermoaceticum

    No full text

    Effector Role Reversal during Evolution:The Case of Frataxin in Fe-S Cluster Biosynthesis

    No full text
    Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich’s ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homolog CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homolog is determined by which cysteine desulfurase is present and not by the identity of the frataxin homolog. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologs. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule

    Mechanistic Insights of IscU Conformation Regulation for Fe–S Cluster Biogenesis Revealed by Variable-Temperature Electrospray Ionization Native Ion Mobility Mass Spectrometry

    No full text
    ABSTRACT: Iron-sulfur (Fe-S) cluster cofactors are required for the function of many critical cellular processes. These cofactors are assembled and inserted into apo target proteins by conserved Fe-S cluster biosynthetic pathways. In the ISC system of E. coli, the scaffold protein IscU assembles Fe-S cluster intermediates from iron, electrons, and inorganic sulfur, which is provided by the cysteine desulfurase enzyme IscS. IscU also binds to Zn, which mimics and competes for binding with the Fe-S cluster. Crystallographic and nuclear magnetic resonance (NMR) spectroscopic studies reveal that IscU is a metamorphic protein that exists in multiple conformational states, which include at least a structured form and a disordered form. The structured form of IscU is favored by metal binding and is stable in a narrow temperature range, undergoing both cold and hot denaturation. However, there is controversy over whether the structured or disordered form of IscU binds to IscS and functions in Fe-S cluster assembly. The recent development of variable-temperature electrospray ionization (vT-ESI) native ion mobility mass spectrometry (nIM-MS) enables probing the temperature dependence of macromolecular conformation and binding events in a single experiment. Here, vT-ESI nIM-MS results established that IscU exists in structured, intermediate, and disordered conformations. IscU samples shift towards high-charge states that have more extended conformations under extreme temperatures, consistent with cold/heat denaturation. A comparison of Zn-IscU and apo-IscU reveals that Zn(II) binding (i) attenuates the cold/heat-denaturation of IscU and promotes the refolding of IscU; (ii) favors the structured aand intermediate conformations and inhibits the disordered high charge states; and (iii) attenuates collisional induced unfolding (CIU) of intermediate conformations. Moreover, IscS was shown to alter the local conformation around the IscU active site, resulting in weakened Zn(II) affinity. Overall, these findings provide structural rationalization of the role of Zn(II) on stabilizing IscU conformation and the role of IscS on altering the IscU active site to prepare for Zn(II) release and cluster synthesis. This work highlights how vT-ESI-nMS can be applied as a powerful tool in mechanistic enzymology by providing details of relationships among temperature, protein conformations, and ligand/protein binding

    Effector role reversal during evolution: the case of frataxin in Fe-S cluster biosynthesis

    No full text
    Human frataxin (FXN) has been intensively studied since the discovery that the FXN gene is associated with the neurodegenerative disease Friedreich's ataxia. Human FXN is a component of the NFS1-ISD11-ISCU2-FXN (SDUF) core Fe-S assembly complex and activates the cysteine desulfurase and Fe-S cluster biosynthesis reactions. In contrast, the Escherichia coli FXN homologue CyaY inhibits Fe-S cluster biosynthesis. To resolve this discrepancy, enzyme kinetic experiments were performed for the human and E. coli systems in which analogous cysteine desulfurase, Fe-S assembly scaffold, and frataxin components were interchanged. Surprisingly, our results reveal that activation or inhibition by the frataxin homologue is determined by which cysteine desulfurase is present and not by the identity of the frataxin homologue. These data are consistent with a model in which the frataxin-less Fe-S assembly complex exists as a mixture of functional and nonfunctional states, which are stabilized by binding of frataxin homologues. Intriguingly, this appears to be an unusual example in which modifications to an enzyme during evolution inverts or reverses the mode of control imparted by a regulatory molecule

    Frataxin Accelerates [2Fe-2S] Cluster Formation on the Human Fe–S Assembly Complex

    No full text
    Iron–sulfur (Fe–S) clusters function as protein cofactors for a wide variety of critical cellular reactions. In human mitochondria, a core Fe–S assembly complex [called SDUF and composed of NFS1, ISD11, ISCU2, and frataxin (FXN) proteins] synthesizes Fe–S clusters from iron, cysteine sulfur, and reducing equivalents and then transfers these intact clusters to target proteins. <i>In vitro</i> assays have relied on reducing the complexity of this complicated Fe–S assembly process by using surrogate electron donor molecules and monitoring simplified reactions. Recent studies have concluded that FXN promotes the synthesis of [4Fe-4S] clusters on the mammalian Fe–S assembly complex. Here the kinetics of Fe–S synthesis reactions were determined using different electron donation systems and by monitoring the products with circular dichroism and absorbance spectroscopies. We discovered that common surrogate electron donor molecules intercepted Fe–S cluster intermediates and formed high-molecular weight species (HMWS). The HMWS are associated with iron, sulfide, and thiol-containing proteins and have properties of a heterogeneous solubilized mineral with spectroscopic properties remarkably reminiscent of those of [4Fe-4S] clusters. In contrast, reactions using physiological reagents revealed that FXN accelerates the formation of [2Fe-2S] clusters rather than [4Fe-4S] clusters as previously reported. In the preceding paper [Fox, N. G., et al. (2015) <i>Biochemistry 54</i>, DOI: 10.1021/bi5014485], [2Fe-2S] intermediates on the SDUF complex were shown to readily transfer to uncomplexed ISCU2 or apo acceptor proteins, depending on the reaction conditions. Our results indicate that FXN accelerates a rate-limiting sulfur transfer step in the synthesis of [2Fe-2S] clusters on the human Fe–S assembly complex

    Human Frataxin Activates Fe–S Cluster Biosynthesis by Facilitating Sulfur Transfer Chemistry

    No full text
    Iron–sulfur clusters are ubiquitous protein cofactors with critical cellular functions. The mitochondrial Fe–S assembly complex, which consists of the cysteine desulfurase NFS1 and its accessory protein (ISD11), the Fe–S assembly protein (ISCU2), and frataxin (FXN), converts substrates l-cysteine, ferrous iron, and electrons into Fe–S clusters. The physiological function of FXN has received a tremendous amount of attention since the discovery that its loss is directly linked to the neurodegenerative disease Friedreich’s ataxia. Previous <i>in vitro</i> results revealed a role for human FXN in activating the cysteine desulfurase and Fe–S cluster biosynthesis activities of the Fe–S assembly complex. Here we present radiolabeling experiments that indicate FXN accelerates the accumulation of sulfur on ISCU2 and that the resulting persulfide species is viable in the subsequent synthesis of Fe–S clusters. Additional mutagenesis, enzyme kinetic, UV–visible, and circular dichroism spectroscopic studies suggest conserved ISCU2 residue C104 is critical for FXN activation, whereas C35, C61, and C104 are all essential for Fe–S cluster formation on the assembly complex. These results cannot be fully explained by the hypothesis that FXN functions as an iron donor for Fe–S cluster biosynthesis, and further support an allosteric regulator role for FXN. Together, these results lead to an activation model in which FXN accelerates persulfide formation on NFS1 and favors a helix-to-coil interconversion on ISCU2 that facilitates the transfer of sulfur from NFS1 to ISCU2 as an initial step in Fe–S cluster biosynthesis
    corecore