4,473 research outputs found

    Genome sequence of the biocontrol agent coniothyrium minitans conio (IMI 134523)

    Get PDF
    Coniothyrium minitans (synonym, Paraphaeosphaeria minitans) is a highly specific mycoparasite of the wide host range crop pathogen Sclerotinia sclerotiorum. The capability of C. minitans to destroy the sclerotia of S. sclerotiorum has been well recognized and it is available as a widely used biocontrol product Contans WG. We present the draft genome sequence of C. minitans Conio (IMI 134523), which has previously been used in extensive studies that formed part of a registration package of the commercial product. This work provides a distinctive resource for further research into the molecular basis of mycoparasitism to harness the biocontrol potential of C. minitans

    Study of MDT calibration constants using H8 testbeam data of year 2004

    Get PDF
    In year 2004 Atlas performed a long campaign of test beam data taking at the H8 Cern beam. Two sectors of the barrel and endcap regions of the Muon Spectrometer were exposed to the beam and large amount of data were collected in well defined and controlled operating conditions. This allowed a careful study on MDT drift properties. A better understanding of the calibration constants, of their definition and determination and of the criteria for their acceptance has been obtained. Systematic effects and time stability of the constants have also been studied

    The role of preclinical models in creatine transporter deficiency: Neurobiological mechanisms, biomarkers and therapeutic development

    Get PDF
    Creatine (Cr) Transporter Deficiency (CTD) is an X-linked metabolic disorder, mostly caused by missense mutations in the SLC6A8 gene and presenting with intellectual disability, autistic behavior, and epilepsy. There is no effective treatment for CTD and patients need lifelong assistance. Thus, the research of novel intervention strategies is a major scientific challenge. Animal models are an excellent tool to dissect the disease pathogenetic mechanisms and drive the preclinical development of therapeutics. This review illustrates the current knowledge about Cr metabolism and CTD clinical aspects, with a focus on mainstay diagnostic and therapeutic options. Then, we discuss the rodent models of CTD characterized in the last decade, comparing the phenotypes expressed within clinically relevant domains and the timeline of symptom development. This analysis highlights that animals with the ubiquitous deletion/mutation of SLC6A8 genes well recapitulate the early onset and the complex pathological phenotype of the human condition. Thus, they should represent the preferred model for preclinical efficacy studies. On the other hand, brain-and cell-specific conditional mutants are ideal for understanding the basis of CTD at a cellular and molecular level. Finally, we explain how CTD models might provide novel insight about the pathogenesis of other disorders, including cancer

    Deciphering the infectious process of Colletotrichum lupini in lupin through transcriptomic and proteomic analysis

    Get PDF
    The fungal phytopathogen Colletotrichum lupini is responsible for lupin anthracnose, resulting in significant yield losses worldwide. The molecular mechanisms underlying this infectious process are yet to be elucidated. This study proposes to evaluate C. lupini gene expression and protein synthesis during lupin infection, using, respectively, an RNAseq-based transcriptomic approach and a mass spectrometry-based proteomic approach. Patterns of differentially-expressed genes in planta were evaluated from 24 to 84 hours post-inoculation, and compared to in vitro cultures. A total of 897 differentially-expressed genes were identified from C. lupini during interaction with white lupin, of which 520 genes were predicted to have a putative function, including carbohydrate active enzyme, effector, protease or transporter-encoding genes, commonly described as pathogenicity factors for other Colletotrichum species during plant infection, and 377 hypothetical proteins. Simultaneously, a total of 304 proteins produced during the interaction were identified and quantified by mass spectrometry. Taken together, the results highlight that the dynamics of symptoms, gene expression and protein synthesis shared similarities to those of hemibiotrophic pathogens. In addition, a few genes with unknown or poorly-described functions were found to be specifically associated with the early or late stages of infection, suggesting that they may be of importance for pathogenicity. This study, conducted for the first time on a species belonging to the Colletotrichum acutatum species complex, presents an opportunity to deepen functional analyses of the genes involved in the pathogenicity of Colletotrichum spp. during the onset of plant infection

    The Belle II SVD detector

    Get PDF
    The Silicon Vertex Detector (SVD) is one of the main detectors in the Belle II experiment at KEK, Japan. In combination with a pixel detector, the SVD determines precise decay vertex and low-momentum track reconstruction. The SVD ladders are being developed at several institutes. For the development of the tracking algorithm as well as the performance estimation of the ladders, beam tests for the ladders were performed. We report an overview of the SVD development, its performance measured in the beam test, and the prospect of its assembly and commissioning until installation

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Performance studies of the Belle II Silicon Vertex Detector with data taken at the DESY test beam in April 2016

    Get PDF
    Belle II is a multipurpose detector currently under construction which will be operated at the next generation B-factory SuberKEKB in Japan. Its main devices for the vertex reconstruction are the Silicon Vertex Detector (SVD) and the Pixel Detector (PXD). In April 2016 a sector of the Belle II SVD and PXD have been tested in a beam of high energetic electrons at the test beam facility at DESY Hamburg (Germany). We report here the results for the hit efficiency estimation and the measurement of the resolution for the Belle II silicon vertex etector. We find that the hit efficiencies are on average above 99.5% and that the measured resolution is within the expectations

    Complete Genome Sequence of the Plant-Pathogenic Fungus Colletotrichum lupini

    Get PDF
    Colletotrichum is a fungal genus (Ascomycota, Sordariomycetes, Glomerellaceae) that includes many economically important plant pathogens that cause devastating diseases of a wide range of plants. In this work, using a combination of long- and short-read sequencing technologies, we sequenced the genome of Colletotrichum lupini RB221, isolated from white lupin (Lupinus albus) in France during a survey in 2014. The genome was assembled into 11 nuclear chromosomes and a mitochondrial genome with a total assembly size of 63.41 Mb and 36.55 kb, respectively. In total, 18,324 protein-encoding genes have been predicted, of which only 39 are specific to C. lupini. This resource will provide insight into pathogenicity factors and will help provide a better understanding of the evolution and genome structure of this important plant pathogen

    Dynamics of SARS-CoV-2 exposure in Malawian infants between February 2020 and May 2021

    Get PDF
    Background: Very limited information is available on SARS-CoV-2 seroprevalence in infants in sub-Saharan countries. Objective: In this study, we aimed to determine the rate and the temporal evolution of SARS CoV-2 seropositivity in breastfed Malawian infants. Study design: Blood samples (n = 250) from 158 infants, born to HIV-negative women and women living with HIV, collected from February 2020 to May 2021, were first tested using an Anti-IgG/A/M SARS CoV 2 ELISA assay against trimeric spike protein, and then, if positive, confirmed using a second ELISA assay detecting IgG against Receptor Binding Domain. Results: The confirmed prevalence of anti-SARS CoV-2 antibodies was 31.0% (95% CI: 23.7%-38.3%) with no significant difference between HIV-exposed and HIV-unexposed infants (29.3% and 37.1% respectively, P = 0.410). The presence of anti-SARS-CoV-2 IgG was not associated with maternal socioeconomic or demographic indices. Conclusions: Our data underline the wide spread of the SARS-CoV-2 infection in the pediatric population in sub-Saharan Africa. Design of more specific serological tests for African samples and improvements in serosurveillance programs are needed for more rigorous monitoring of the dynamics of SARS-CoV-2 infection in Africa

    Cyclocreatine treatment ameliorates the cognitive, autistic and epileptic phenotype in a mouse model of Creatine Transporter Deficiency

    Get PDF
    Creatine Transporter Deficiency (CTD) is an inborn error of metabolism presenting with intellectual disability, behavioral disturbances and epilepsy. There is currently no cure for this disorder. Here, we employed novel biomarkers for monitoring brain function, together with well-established behavioral readouts for CTD mice, to longitudinally study the therapeutic efficacy of cyclocreatine (cCr) at the preclinical level. Our results show that cCr treatment is able to partially correct hemodynamic responses and EEG abnormalities, improve cognitive deficits, revert autistic-like behaviors and protect against seizures. This study provides encouraging data to support the potential therapeutic benefit of cyclocreatine or other chemically modified lipophilic analogs of Cr
    • …
    corecore