16,484 research outputs found

    Theoretical Clues to the Ultraviolet Diversity of Type Ia Supernovae

    Get PDF
    The effect of metallicity on the observed light of Type Ia supernovae (SNe Ia) could lead to systematic errors as the absolute magnitudes of local and distant SNe Ia are compared to measure luminosity distances and determine cosmological parameters. The UV light may be especially sensitive to metallicity, though different modeling methods disagree as to the magnitude, wavelength dependence, and even the sign of the effect. The outer density structure, ^56 Ni, and to a lesser degree asphericity, also impact the UV. We compute synthetic photometry of various metallicity-dependent models and compare to UV/optical photometry from the Swift Ultra-Violet/Optical Telescope. We find that the scatter in the mid-UV to near-UV colors is larger than predicted by changes in metallicity alone and is not consistent with reddening. We demonstrate that a recently employed method to determine relative abundances using UV spectra can be done using UVOT photometry, but we warn that accurate results require an accurate model of the cause of the variations. The abundance of UV photometry now available should provide constraints on models that typically rely on UV spectroscopy for constraining metallicity, density, and other parameters. Nevertheless, UV spectroscopy for a variety of SN explosions is still needed to guide the creation of accurate models. A better understanding of the influences affecting the UV is important for using SNe Ia as cosmological probes, as the UV light may test whether SNe Ia are significantly affected by evolutionary effects.Comment: 10 pages. Submitted to Ap

    Whispering Gallery States of Antihydrogen

    Full text link
    We study theoretically interference of the long-living quasistationary quantum states of antihydrogen atoms, localized near a concave material surface. Such states are an antimatter analog of the whispering gallery states of neutrons and matter atoms, and similar to the whispering gallery modes of sound and electro-magnetic waves. Quantum states of antihydrogen are formed by the combined effect of quantum reflection from van der Waals/Casimir-Polder (vdW/CP) potential of the surface and the centrifugal potential. We point out a method for precision studies of quantum reflection of antiatoms from vdW/CP potential; this method uses interference of the whispering gallery states of antihydrogen.Comment: 13 pages 7 figure

    Assessment of the Low Alloy Cast Steel Inoculation Effects with Chosen Additives

    Get PDF
    Structure, and thus the mechanical properties of steel are primarily a function of chemical composition and the solidification process which can be influenced by the application of the inoculation treatment. This effect depends on the modifier used. The article presents the results of studies designed to assess the effects of structural low alloy steel inoculation by selected modifying additives. The study was performed on nine casts modeled with different inoculants, assessment of the procedure impact was based on the macrostructure of made castings. The ratio of surface area equivalent to the axial zone of the crystals and columnar crystals zone was adopted as a measure of the inoculation effect

    Stellar Population Models and Individual Element Abundances I: Sensitivity of Stellar Evolution Models

    Get PDF
    Integrated light from distant galaxies is often compared to stellar population models via the equivalent widths of spectral features--spectral indices--whose strengths rely on the abundances of one or more elements. Such comparisons hinge not only on the overall metal abundance but also on relative abundances. Studies have examined the influence of individual elements on synthetic spectra but little has been done to address similar issues in the stellar evolution models that underlie most stellar population models. Stellar evolution models will primarily be influenced by changes in opacities. In order to explore this issue in detail, twelve sets of stellar evolution tracks and isochrones have been created at constant heavy element mass fraction Z that self-consistently account for varying heavy element mixtures. These sets include scaled-solar, alpha-enhanced, and individual cases where the elements C, N, O, Ne, Mg, Si, S, Ca, Ti, and Fe have been enhanced above their scaled-solar values. The variations that arise between scaled-solar and the other cases are examined with respect to the H-R diagram and main sequence lifetimes.Comment: 33 pages, 13 figures, accepted to Ap

    On the Spectroscopic Diversity of Type Ia Supernovae

    Get PDF
    A comparison of the ratio of the depths of two absorption features in the spectra of TypeIa supernovae (SNe Ia) near the time of maximum brightness with the blueshift of the deep red Si II absorption feature 10 days after maximum shows that the spectroscopic diversity of SNe Ia is multi-dimensional. There is a substantial range of blueshifts at a given value of the depth ratio. We also find that the spectra of a sample of SNe Ia obtained a week before maximum brightness can be arranged in a ``blueshift sequence'' that mimics the time evolution of the pre-maximum-light spectra of an individual SN Ia, the well observed SN 1994D. Within the context of current SN Ia explosion models, we suggest that some of the SNe Ia in our sample were delayed-detonations while others were plain deflagrations.Comment: accepted for publication in ApJ

    Time Dependent Monte Carlo Radiative Transfer Calculations For 3-Dimensional Supernova Spectra, Lightcurves, and Polarization

    Get PDF
    We discuss Monte-Carlo techniques for addressing the 3-dimensional time-dependent radiative transfer problem in rapidly expanding supernova atmospheres. The transfer code SEDONA has been developed to calculate the lightcurves, spectra, and polarization of aspherical supernova models. From the onset of free-expansion in the supernova ejecta, SEDONA solves the radiative transfer problem self-consistently, including a detailed treatment of gamma-ray transfer from radioactive decay and with a radiative equilibrium solution of the temperature structure. Line fluorescence processes can also be treated directly. No free parameters need be adjusted in the radiative transfer calculation, providing a direct link between multi-dimensional hydrodynamical explosion models and observations. We describe the computational techniques applied in SEDONA, and verify the code by comparison to existing calculations. We find that convergence of the Monte Carlo method is rapid and stable even for complicated multi-dimensional configurations. We also investigate the accuracy of a few commonly applied approximations in supernova transfer, namely the stationarity approximation and the two-level atom expansion opacity formalism.Comment: 16 pages, ApJ accepte

    Paper Session III-C - From Motomir to Meditrain: Medical Instrumentation as Spin-Off from Space Application

    Get PDF
    The medical instrument MEDITRAIN r (patented) is a computer controlled electromechanical ergometer, which can be used in the neuro-physiological and metabolic analysis of the human motoric system and can be applied in the training, diagnostics & rehabilitation of muscles of the upper or lower extremities. The design is based on the flight hardware experiment MOTOMIR , which was developed in the context of the joint Austro-Soviet Space Mission AUSTROMIR to the MIR Space Station. MOTOMIR was launched in August 1991 and was in use aboard the space station for basic muscle research and training of the Cosmonauts up to August 1992. The functional principle of MEDITRAIN is based on the generation of precisely defined motion patterns through velocity controlled translatoric movement of two handles, to which the arms or legs of the patient are latched. These movements can be pre-defined as series of cyclic or acyclic runs of variable duration and velocity between defined start and end points. Via strain gauges in the handles, the isometric, concentric and eccentric forces exerted by the respective muscles are recorded in relation to the position & velocity of the handles (i.e. in relation to the angle and velocity of the respective extremity). In parallel, Electro-Myographic (EMG), Electro-Oculargraphic (EOG) and Electro-Cardiographic (ECG) measurements are performed and correlated to the force and machine data. MEDITRAIN currently offers up to 32 analog channels operating at a standard sampling rate of 1 kHz. All measurement data can be displayed in real-time and are stored together with the personal data of the respective patient

    LiTaO3/Silicon Composite Wafers for the Fabrication of Low Loss Low TCF High Coupling Resonators for Filter Applications

    Get PDF
    AbstractSAW devices are widely used for radio-frequency (RF) telecommunication filtering and the number of SAW filters, resonators or duplexers is still increasing in RF stage of cellular phones. Therefore, a strong effort is still dedicated to reduce as much as possible their sensitivity to environmental parameter and more specifically to temperature. Bounding processes have been developed at FEMTO-ST and CEA-LETI using either Au/Au or direct bonding techniques for the fabrication of composite wafers combining materials with very different thermoelastic properties, yielding innovative solutions for about-zero temperature coefficient of frequency (TCF) bulk acoustic wave devices. In the present work, this approach has been applied to (YXl)/42∘ lithium tantalate plates, bounded onto (100) silicon wafers and thinned down to 25μm. The leading idea already explored by other groups as mentioned in introduction consists in impeding the thermal expansion of the piezoelectric material using silicon limited expansion. 2GHz resonators have been built on such plates and tested electrically and thermally, first by tip probing. A dramatic reduction of the TCF is observed for all the tested devices, allowing to reduce the thermal drift of the resonators down to a few ppm.K-1 within the standard temperature range. We then propose an analysis of the frequency-temperature behavior of the device to improve the resonator design to use these wafers for industrial applications

    First visual orbit for the prototypical colliding-wind binary WR 140

    Get PDF
    Wolf-Rayet stars represent one of the final stages of massive stellar evolution. Relatively little is known about this short-lived phase and we currently lack reliable mass, distance, and binarity determinations for a representative sample. Here we report the first visual orbit for WR 140(=HD193793), a WC7+O5 binary system known for its periodic dust production episodes triggered by intense colliding winds near periastron passage. The IOTA and CHARA interferometers resolved the pair of stars in each year from 2003--2009, covering most of the highly-eccentric, 7.9 year orbit. Combining our results with the recent improved double-line spectroscopic orbit of Fahed et al. (2011), we find the WR 140 system is located at a distance of 1.67 +/- 0.03 kpc, composed of a WR star with M_WR = 14.9 +/- 0.5 Msun and an O star with M_O = 35.9 +/- 1.3 Msun. Our precision orbit yields key parameters with uncertainties times 6 smaller than previous work and paves the way for detailed modeling of the system. Our newly measured flux ratios at the near-infrared H and Ks bands allow an SED decomposition and analysis of the component evolutionary states.Comment: Complete OIFITS dataset included via Data Conservancy Projec
    corecore