1,045 research outputs found

    Did changing primary care delivery models change performance? A population based study using health administrative data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary care reform in Ontario, Canada started with the introduction of new enrollment models, the two largest of which are Family Health Networks (FHNs), a capitation-based model, and Family Health Groups (FHGs), a blended fee-for-service model. The purpose of this study was to evaluate differences in performance between FHNs and FHGs and to compare performance before and after physicians joined these new primary care groups.</p> <p>Methods</p> <p>This study used Ontario administrative claims data to compare performance measures in FHGs and FHNs. The study population included physicians who belonged to a FHN or FHG for at least two years. Patients were included in the analyses if they enrolled with a physician in the two years after the physician joined a FHN or FHG, and also if they saw the physician in a two year period prior to the physician joining a FHN or FHG. Performance was derived from the administrative data, and included measures of preventive screening for cancer (breast, cervical, colorectal) and chronic disease management (diabetes, heart failure, asthma).</p> <p>Results</p> <p>Performance measures did not vary consistently between models. In some cases, performance approached current benchmarks (Pap smears, mammograms). In other cases it was improving in relation to previous measures (colorectal cancer screening). There were no changes in screening for cervical cancer or breast cancer after joining either a FHN or FHG. Colorectal cancer screening increased in both FHNs and FHGs. After enrolling in either a FHG or a FHN, prescribing performance measures for diabetes care improved. However, annual eye examinations decreased for younger people with diabetes after joining a FHG or FHN. There were no changes in performance measures for heart failure management or asthma care after enrolling in either a FHG or FHN.</p> <p>Conclusions</p> <p>Some improvements in preventive screening and diabetes management which were seen amongst people after they enrolled may be attributed to incentive payments offered to physicians within FHGs and FHNs. However, these primary care delivery models need to be compared with other delivery models and fee for service practices in order to describe more specifically what aspects of model delivery and incentives affect care.</p

    Drip Paintings and Fractal Analysis

    Full text link
    It has been claimed [1-6] that fractal analysis can be applied to unambiguously characterize works of art such as the drip paintings of Jackson Pollock. This academic issue has become of more general interest following the recent discovery of a cache of disputed Pollock paintings. We definitively demonstrate here, by analyzing paintings by Pollock and others, that fractal criteria provide no information about artistic authenticity. This work has also led to two new results in fractal analysis of more general scientific significance. First, the composite of two fractals is not generally scale invariant and exhibits complex multifractal scaling in the small distance asymptotic limit. Second the statistics of box-counting and related staircases provide a new way to characterize geometry and distinguish fractals from Euclidean objects

    Equilibrium states and invariant measures for random dynamical systems

    Full text link
    Random dynamical systems with countably many maps which admit countable Markov partitions on complete metric spaces such that the resulting Markov systems are uniformly continuous and contractive are considered. A non-degeneracy and a consistency conditions for such systems, which admit some proper Markov partitions of connected spaces, are introduced, and further sufficient conditions for them are provided. It is shown that every uniformly continuous Markov system associated with a continuous random dynamical system is consistent if it has a dominating Markov chain. A necessary and sufficient condition for the existence of an invariant Borel probability measure for such a non-degenerate system with a dominating Markov chain and a finite (16) is given. The condition is also sufficient if the non-degeneracy is weakened with the consistency condition. A further sufficient condition for the existence of an invariant measure for such a consistent system which involves only the properties of the dominating Markov chain is provided. In particular, it implies that every such a consistent system with a finite Markov partition and a finite (16) has an invariant Borel probability measure. A bijective map between these measures and equilibrium states associated with such a system is established in the non-degenerate case. Some properties of the map and the measures are given.Comment: The article is published in DCDS-A, but without the 3rd paragraph on page 4 (the complete removal of the paragraph became the condition for the publication in the DCDS-A after the reviewer ran out of the citation suggestions collected in the paragraph

    Irreversibility in a simple reversible model

    Full text link
    This paper studies a parametrized family of familiar generalized baker maps, viewed as simple models of time-reversible evolution. Mapping the unit square onto itself, the maps are partly contracting and partly expanding, but they preserve the global measure of the definition domain. They possess periodic orbits of any period, and all maps of the set have attractors with well defined structure. The explicit construction of the attractors is described and their structure is studied in detail. There is a precise sense in which one can speak about absolute age of a state, regardless of whether the latter is applied to a single point, a set of points, or a distribution function. One can then view the whole trajectory as a set of past, present and future states. This viewpoint is then applied to show that it is impossible to define a priori states with very large "negative age". Such states can be defined only a posteriori. This gives precise sense to irreversibility -- or the "arrow of time" -- in these time-reversible maps, and is suggested as an explanation of the second law of thermodynamics also for some realistic physical systems.Comment: 15 pages, 12 Postscript figure

    Ionization state, excited populations and emission of impurities in dynamic finite density plasmas: I. The generalized collisional-radiative model for light elements

    Get PDF
    The paper presents an integrated view of the population structure and its role in establishing the ionization state of light elements in dynamic, finite density, laboratory and astrophysical plasmas. There are four main issues, the generalized collisional-radiative picture for metastables in dynamic plasmas with Maxwellian free electrons and its particularizing to light elements, the methods of bundling and projection for manipulating the population equations, the systematic production/use of state selective fundamental collision data in the metastable resolved picture to all levels for collisonal-radiative modelling and the delivery of appropriate derived coefficients for experiment analysis. The ions of carbon, oxygen and neon are used in illustration. The practical implementation of the methods described here is part of the ADAS Project

    On Multifractal Structure in Non-Representational Art

    Get PDF
    Multifractal analysis techniques are applied to patterns in several abstract expressionist artworks, paintined by various artists. The analysis is carried out on two distinct types of structures: the physical patterns formed by a specific color (``blobs''), as well as patterns formed by the luminance gradient between adjacent colors (``edges''). It is found that the analysis method applied to ``blobs'' cannot distinguish between artists of the same movement, yielding a multifractal spectrum of dimensions between about 1.5-1.8. The method can distinguish between different types of images, however, as demonstrated by studying a radically different type of art. The data suggests that the ``edge'' method can distinguish between artists in the same movement, and is proposed to represent a toy model of visual discrimination. A ``fractal reconstruction'' analysis technique is also applied to the images, in order to determine whether or not a specific signature can be extracted which might serve as a type of fingerprint for the movement. However, these results are vague and no direct conclusions may be drawn.Comment: 53 pp LaTeX, 10 figures (ps/eps

    Coherent States Measurement Entropy

    Full text link
    Coherent states (CS) quantum entropy can be split into two components. The dynamical entropy is linked with the dynamical properties of a quantum system. The measurement entropy, which tends to zero in the semiclassical limit, describes the unpredictability induced by the process of a quantum approximate measurement. We study the CS--measurement entropy for spin coherent states defined on the sphere discussing different methods dealing with the time limit nn \to \infty. In particular we propose an effective technique of computing the entropy by iterated function systems. The dependence of CS--measurement entropy on the character of the partition of the phase space is analysed.Comment: revtex, 22 pages, 14 figures available upon request (e-mail: [email protected]). Submitted to J.Phys.

    Stationary Properties of a Randomly Driven Ising Ferromagnet

    Full text link
    We consider the behavior of an Ising ferromagnet obeying the Glauber dynamics under the influence of a fast switching, random external field. Analytic results for the stationary state are presented in mean-field approximation, exhibiting a novel type of first order phase transition related to dynamic freezing. Monte Carlo simulations performed on a quadratic lattice indicate that many features of the mean field theory may survive the presence of fluctuations.Comment: 5 pages in RevTex format, 7 eps/ps figures, send comments to "mailto:[email protected]", submitted to PR

    Spectrum and diffusion for a class of tight-binding models on hypercubes

    Full text link
    We propose a class of exactly solvable anisotropic tight-binding models on an infinite-dimensional hypercube. The energy spectrum is analytically computed and is shown to be fractal and/or absolutely continuous according to the value hopping parameters. In both cases, the spectral and diffusion exponents are derived. The main result is that, even if the spectrum is absolutely continuous, the diffusion exponent for the wave packet may be anything between 0 and 1 depending upon the class of models.Comment: 5 pages Late

    Multifractal properties of power-law time sequences; application to ricepiles

    Get PDF
    We study the properties of time sequences extracted from a self-organized critical system, within the framework of the mathematical multifractal analysis. To this end, we propose a fixed-mass algorithm, well suited to deal with highly inhomogeneous one dimensional multifractal measures. We find that the fixed mass (dual) spectrum of generalized dimensions depends on both the system size L and the length N of the sequence considered, being however stable when these two parameters are kept fixed. A finite-size scaling relation is proposed, allowing us to define a renormalized spectrum, independent of size effects.We interpret our results as an evidence of extremely long-range correlations induced in the sequence by the criticality of the systemComment: 12 pages, RevTex, includes 9 PS figures, Phys. Rev. E (in press
    corecore