871 research outputs found

    Changes in the cerebellar cytoarchitecture of hibernating hedgehog Erinaceus europaeus L. (Mammalia): an immunocytochemical approach

    Get PDF
    Hibernation is an amazing animal strategy to survive when the environmental temperature is very low and food resources are scarce. Successful hibernation requires a variety of complex biological adaptations, in which the brain plays a central regulatory role. Currently, little information is available regarding the morphology and functional activity of specific neurons within the cerebellar cytoarchitecture of hibernating animals. In the present study, we investigated the immunohistochemical expression of essential proteins in the cerebellum of a mammalian hibernator (i.e. hedgehog Erinaceus europaeus L.), focusing on (i) Purkinje neurons, the sole output cells of the cerebellar cortex; (ii) selected neurotransmitters involved in hibernation processes; (iii) intracellular calcium homeostasis, considering that calcium is also an important regulator of neurotransmission mechanisms; and (iv) cytoskeletal proteins, involved in maintenance of neuronal shape and axon calibre. Specifically, we studied in situ immunocytochemical changes during the torpor state of hibernation (November–March) versus the activity phase (April–September). We employed different selected markers, i.e. glutamic acid decarboxylase (GAD67) and postsynaptic glutamate ionotropic receptor GluR2-3, different calcium-binding proteins (i.e. calbindin, parvalbumin and calretinin) and cytoskeletal components (i.e. pNF-H and MAP2). In summary, our data in hibernating animals demonstrated: (i) downregulation of GAD67, indicating loss/changes of synaptic contacts on Purkinje somata and dendrites; (ii) GluR2-3 upregulation in Purkinje neurons, with a drastic decrease of calbindin expression; and (iii) decrease of normal mechanisms regulating intracellular calcium homeostasis. We also found a decrease/modification in the distribution of cytoskeletal proteins, particularly evident for pNF-H. Changes in the functional activity of Purkinje cells were accompanied by some morphological dendrite alterations, signs of degeneration in cell somata and flattened basket pinceaux at the Purkinje axon hillock. These findings confirm that hibernation makes heterothermic animals a valuable model to study physiological adaptations to adverse conditions, and also for understanding cellular and molecular mechanisms aimed at preserving mammalian organs from full degeneration and death

    Monitoring and modeling the invasion of the fast spreading alien Senecio inaequidens DC. in an alpine region

    Get PDF
    We modeled the distribution of the South African alien Senecio inaequidens DC. in the Aosta Valley, Western Italian Alps, using data extracted from the Regional floristic database and from an intensive field survey carried out in years 2009-2010. The aims of the work were (1) to evaluate whether the species is in the introduction, colonization, or establishment stage of invasion, (2) to detect the environmental factors that drive the invasion process, and (3) to highlight the potential range of distribution of the alien species. The modeling framework was a stepwise generalized linear model (GLM), using gridded presence/absence data and environmental predictors such as topography, climate, land use, and anthropogenic and natural disturbances. GLM were fit both with and without an additional independent variable to take into account current dispersal limitations. S. inaequidens displayed a very fast spread in the Aosta Valley in the years 1990-2010. The species was positively associated with roads and rivers, southern slopes, and negatively with elevation. However, it was found at an elevation of 1600 m, showing the ability to reach higher elevations than those observed for other invasive alien species, and confirming to be pre-adapted to mountain conditions. The difference between the species distribution models, with and without dispersal constraints, suggested that the availability of seed sources still limits the potential distribution of the species, rather than the environmental variables, and that the realized regional niche differs to a great extent from the equilibrium niche. When limitations to the seed source cease (i.e., in the establishment stage), the species will likely invade large areas that are currently characterized by pastures and grasslands with native species of high agricultural importance. The invasion of S. inaequidens should therefore be considered a serious threat, due to its potential to invade mountain regions, and in particular to colonize habitats used for grazing and forage, thus leading to a high risk for cattle and human health. We discuss the relevance of the results both concerning communication with the public and to support local eradication and control activities. The inclusion of S. inaequidens in the "black list" of the regional law for the conservation of alpine flora (L.R. 45/2009) will help to transfer the information and support invasion control, in particular at medium elevations

    Towards alien plant prioritization in Italy: methodological issues and first results

    Get PDF
    In recent decades, multiple actions have been taken to counteract the relentless expansion of invasive alien species as well as to gain a better understanding of their effects on ecosystems. Here, we describe the approach designed by the Italian Botanical Society that is aimed at selecting a list of candidate alien plants to be subjected to a prioritization procedure. We selected a total of 96 species on the basis of data related to their occurrence on both a national and regional scale, their invasiveness and their potential to invade plant communities and/or habitats of community concern. This list represents the first result obtained by applying this standardized workflow and is a first step towards the identification of those alien species that should be included in the national list according to Regulation (EU) n. 1143/2014
    • …
    corecore