2,737 research outputs found

    Form Ever Follows Function: Using Technology to Improve Feedback on Student Writing in Law School

    Get PDF
    Critiquing student writing is an important responsibility of many law professors. While the focus of a teacher\u27s critique should be on the substance of the feedback, teachers should also consider the form of the critique to ensure that they are providing the necessary guidance to students effectively and efficiently. When choosing the critique format, teachers have a variety of options, including several electronic techniques. Unfortunately, many teachers have not considered the use of technology to comment on student writing. However, advances in technology coupled with the technological savvy and comfort level of today\u27s student, may eventually dictate that all law teachers use some kind of electronic feedback when commenting on their students\u27 papers. This article is designed to encourage law professors to consider the use of technology to comment on student assignments by demonstrating that an electronic format could help many teachers be more proficient when critiquing their students\u27 writing. To help teachers determine the best critique format for their classes, the article provides a comparison of the different commenting methods and explores the considerations teachers should use when choosing the form of feedback. The article closes with a step-by-step guide to the current technology for providing comments on student writing electronically

    Triage in the Trenches of the Legal Writing Course: The Theory and Methodology of Analytical Critique

    Get PDF
    Providing feedback to written work is one of the most important and challenging aspects of teaching legal writing. Legal writing professors spend a great deal of time and energy critiquing and grading student work. However, few legal writing professionals begin teaching with any formal training on providing feedback to novice legal writers. Fortunately, giving useful comments on student writing is a skill that can be learned. To begin, teachers must learn to prioritize feedback on the most important analytical problems on draft assignments. Focusing on analytical deficiencies helps students understand that substantive problems must be corrected before writing and stylistic problems can be effectively addressed. The best way to become proficient at prioritizing feedback is to understand the theory of analytical critique and consider a variety of critiquing methods. This article explores the theory of analytical critique and provides concrete suggestions on how to put the theory into practice when giving feedback on student writing. After discussing the theory and methodology of analytical critique, the article provides a hand-on, workshop-type experience. The article includes a complete student assignment to illustrate the techniques necessary to comment on analytical problems in novice legal writing. The assignment includes client facts, the relevant authority and a student draft memorandum analyzing the legal issues. The article closes with a thorough explanation of sample feedback to the draft memorandum to illustrate the theoretical ideas and critiquing methods discussed in the article

    The information of high-dimensional time-bin encoded photons

    Get PDF
    We determine the shared information that can be extracted from time-bin entangled photons using frame encoding. We consider photons generated by a general down-conversion source and also model losses, dark counts and the effects of multiple photons within each frame. Furthermore, we describe a procedure for including other imperfections such as after-pulsing, detector dead-times and jitter. The results are illustrated by deriving analytic expressions for the maximum information that can be extracted from high-dimensional time-bin entangled photons generated by a spontaneous parametric down conversion. A key finding is that under realistic conditions and using standard SPAD detectors one can still choose frame size so as to extract over 10 bits per photon. These results are thus useful for experiments on high-dimensional quantum-key distribution system.Comment: 18 pages, 6 figure

    Generation of graph-state streams

    Full text link
    We propose a protocol to generate a stream of mobile qubits in a graph state through a single stationary parent qubit and discuss two types of its physical implementation, namely, the generation of photonic graph states through an atom-like qubit and those of flying atoms through a cavity-mode photonic qubit. The generated graph states fall into an important class that can hugely reduce the resource requirement of fault-tolerant linear optics quantum computation, which was previously known to be far from realistic. In regard to the flying atoms, we also propose a heralded generation scheme, which allows for high-fidelity graph states even under the photon loss.Comment: Accepted for publication at PRA Rapid Communication

    Development of a hybrid fluidic-electronic system to measure the composition of a water methanol mixture

    Get PDF
    The purpose of this work is to develop a method and build an apparatus capable of measuring the composition of a water-methanol mixture by means of a hybrid fluidic-electronic device. The principle operation is based on the fact that the natural frequency of fluidic oscillators of a given geometric configuration and supply pressure depends on the density of the gas employed

    Identification and characterization of estrogen receptor-regulated gene expression programs

    Get PDF
    The physiological effects of natural and synthetic estrogens are mediated by estrogen receptor alpha (ER alpha), and estrogen receptor beta (ER beta). Within the nucleus of target cells, ER alpha and ER beta serve as ligand-activated transcription factors to stimulate or repress the transcription of estrogen receptor regulated genes. ER alpha and ER beta may be co-expressed in estrogen-responsive cells, but may also be differentially expressed in a cell- and tissue-specific manner. In addition, within a given context these two receptors have different ligand binding and transcriptional activities. Taken together, these attributes underlie differences in target gene regulation, and overall, different physiological actions by ER subtypes. The work described here is an attempt to understand the roles of ER alpha and ER beta in target tissues (e.g. bone, breast, uterus) including the gene networks and cell signaling pathways under ER regulation. We have also characterized the regulation of one of the ER-regulated genes, Carbonic Anhydrase XII, and examined its regulation by ER alpha through use of a conserved distal enhancer. The work described here reports the characterization of individual gene regulatory actions of ER alpha and ER beta. To investigate the individual actions of ER alpha or ER beta, we utilized Affymetrix oligonucleotide arrays to profile transcripts regulated by 17beta-estradiol (E2) in U2OS-ER alpha and U2OS-ER beta cells. These cell lines were constructed by stable integration of ER alpha or ER beta into human osteoblast-like U2OS osteosarcoma cells and initially characterized for ER subtype expression, E2-binding, and cellular responses to E2, including proliferation, motility, and adhesion. Cells expressing apo-ER alpha or apo-ER beta did not show significant alteration in adhesion or proliferation after addition of E2, however there was a significant stimulation of migration in E2-treated ER beta-expressing cells. U2OS-ER alpha, and U2OS-ER beta cells were treated with 10 nM E2 for 0, 4, 8, 24, and 48 hours and total RNA was collected and hybridized to Affymetryx U95Av2 GeneChips and subjected to a Confidence Score to determine E2-regulated RNAs. Of the ca. 100 stimulated or repressed genes identified, some were stimulated by E2 equally through ER alpha and ER beta, whereas others were selectively stimulated via ER alpha or ER beta. The E2-regulated genes showed three distinct temporal patterns of expression over the 48 hour time course studied. Among stimulated genes, ER alpha-containing cells exhibited a greater number of regulated transcripts, and overall magnitude of stimulation was increased as compared those regulated by ER beta. Of the functional categories of the E2-regulated genes, most numerous were those encoding cytokines and factors associated with immune response, signal transduction, and cell migration and cytoskeleton regulation, indicating that E2 can exert effects on multiple pathways in these osteoblast-like cell lines. Of note, E2 up-regulated several genes associated with cell motility selectively via ER beta, in keeping with the selective E2 enhancement of the motility of ER beta-containing cells. On genes regulated equally by E2 via ER alpha or ER beta, the phytoestrogen genistein preferentially stimulated gene expression via ER beta. These studies indicate both common as well as distinct target genes for these two ERs, and identify many novel genes not previously known to be under estrogen regulation. We have examined the ER regulation of the Carbonic Anhydrase XII (CA12) gene, a gene identified as E2-regulated in the studies described above. We investigated the expression of CA12 and its and regulation of by 17beta-estradiol and selective estrogen receptor modulators in breast cancer cells, and characterize the ER usage of a distal enhancer necessary for CA12 gene regulation. We find that CA12 expression is highly correlated with ER alpha expression in human breast tumors. We demonstrate that E2 and SERMS increase CA12 mRNA and protein in multiple breast cancer cell types expressing ER alpha, and that CA12 regulation by estrogen is a primary transcriptional response mediated by ER alpha. By genome-wide chromatin immunoprecipitation (ChIP) and ChIP scanning of the CA12 locus, we find E2-occupied ER alpha is recruited to a distal region 6.1 kb upstream of the CA12 transcription start site (TSS) in vivo. We find that E2 treatment results in recruitment of RNA polymerase II and steroid receptor coactivators SRC-2 and SRC-3 to the CA12 genomic locus and is correlated with increased histone H4 acetylation. Mutagenesis of an imperfect estrogen-responsive element within this -6.1kb distal enhancer region abolishes estrogen-dependent heterologous reporter activity. Chromosome conformation capture (3C) and chromatin immunoprecipitation assays demonstrate that this distal enhancer communicates with the transcriptional start site of the CA12 gene via intra-chromosomal looping upon hormone treatment. This distal enhancer element is observed in the homologous mouse genomic sequence, and the expression of the mouse homolog, Car12, is rapidly and robustly stimulated by estradiol in the mouse uterus in vivo, suggesting that the ER regulation of CA12 is mechanistically and evolutionarily conserved. Our findings highlight the crucial role of ER in regulation of the CA12 gene, and provide insight into the transcriptional regulatory mechanism that accounts for the strong association of CA12 and ER in human breast cancers. In addition, our findings imply that involvement of long distance enhancers in regulation of estrogen-responsive genes in breast cancer may be more frequent than previously appreciated
    corecore