28,045 research outputs found

    Effective Lagrangian for Two-photon and Two-gluon Decays of PP-wave Heavy Quarkonium χc0,2\chi_{c0,2} and χb0,2\chi_{b0,2} states

    Full text link
    In the traditional non-relativistic bound state calculation, the two-photon decay amplitudes of the PP-wave χc0,2\chi_{c0,2} and χb0,2\chi_{b0,2} states depend on the derivative of the wave function at the origin which can only be obtained from potential models. However by neglecting the relative quark momenta, the decay amplitude can be written as the matrix element of a local heavy quark field operator which could be obtained from other processes or computed with QCD sum rules technique or lattice simulation. Following the same line as in recent work for the two-photon decays of the SS-wave ηc\eta_{c} and ηb\eta_{b} quarkonia, we show that the effective Lagrangian for the two-photon decays of the PP-wave χc0,2\chi_{c0,2} and χb0,2\chi_{b0,2} is given by the heavy quark energy-momentum tensor local operator or its trace, the QˉQ\bar{Q}Q scalar density and that the expression for χc0\chi_{c0} two-photon and two-gluon decay rate is given by the fχc0f_{\chi_{c0}} decay constant and is similar to that of ηc\eta_{c} which is given by fηcf_{\eta_{c}}. From the existing QCD sum rules value for fχc0f_{\chi_{c0}}, we get 5keV5\rm keV for the χc0\chi_{c0} two-photon width, somewhat larger than measurement, but possibly with large uncertainties.Comment: v3, LaTeX, 5 pages, 1 figure, minor typos corrected, to appear in Physical Review

    A review of utility issues for the integration of wind electric generators

    Get PDF
    A review of issues and concerns of the electric utility industry for the integration of wind electric generation is offered. The issues have been categorized in three major areas: planning, operations, and dynamic interaction. Representative studies have been chosen for each area to illustrate problems and to alleviate some concerns. The emphasis of this paper is on individual large wind turbines (WTs) and WT arrays for deployment at the bulk level in a utility system

    Screening of charged impurities with multi-electron singlet-triplet spin qubits in quantum dots

    Full text link
    Charged impurities in semiconductor quantum dots comprise one of the main obstacles to achieving scalable fabrication and manipulation of singlet-triplet spin qubits. We theoretically show that using dots that contain several electrons each can help to overcome this problem through the screening of the rough and noisy impurity potential by the excess electrons. We demonstrate how the desired screening properties turn on as the number of electrons is increased, and we characterize the properties of a double quantum dot singlet-triplet qubit for small odd numbers of electrons per dot. We show that the sensitivity of the multi-electron qubit to charge noise may be an order of magnitude smaller than that of the two-electron qubit.Comment: 17 pages, 11 figures; typos corrected, minor revision

    Distances to six Cepheids in the LMC cluster NGC1866 from the near-IR surface-brightness method

    Full text link
    We derive individual distances to six Cepheids in the young populous star cluster NGC1866 in the Large Magellanic Cloud employing the near-IR surface brightness technique. With six stars available at the exact same distance we can directly measure the intrinsic uncertainty of the method. We find a standard deviation of 0.11 mag, two to three times larger than the error estimates and more in line with the estimates from Bayesian statistical analysis by Barnes et al. (2005). Using all six distance estimates we determine an unweighted mean cluster distance of 18.30+-0.05. The observations indicate that NGC1866 is close to be at the same distance as the main body of the LMC. If we use the stronger dependence of the p-factor on the period as suggested by Gieren et al. (2005) we find a distance of 18.50+-0.05 (internal error) and the PL relations for Galactic and MC Cepheids are in very good agreement.Comment: Presented at the conference "Stellar Pulsation and Evolution" in Monte Porzio Catone, June 2005. To appear in Mem. Soc. Ast. It. 76/

    Coulomb crystallization in expanding laser-cooled neutral plasmas

    Full text link
    We present long-time simulations of expanding ultracold neutral plasmas, including a full treatment of the strongly coupled ion dynamics. Thereby, the relaxation dynamics of the expanding laser-cooled plasma is studied, taking into account elastic as well as inelastic collisions. It is demonstrated that, depending on the initial conditions, the ionic component of the plasma may exhibit short-range order or even a superimposed long-range order resulting in concentric ion shells. In contrast to ionic plasmas confined in traps, the shell structures are built up from the center of the plasma cloud rather than from the periphery

    Aperiodic quantum XXZ chains: Renormalization-group results

    Full text link
    We report a comprehensive investigation of the low-energy properties of antiferromagnetic quantum XXZ spin chains with aperiodic couplings. We use an adaptation of the Ma-Dasgupta-Hu renormalization-group method to obtain analytical and numerical results for the low-temperature thermodynamics and the ground-state correlations of chains with couplings following several two-letter aperiodic sequences, including the quasiperiodic Fibonacci and other precious-mean sequences, as well as sequences inducing strong geometrical fluctuations. For a given aperiodic sequence, we argue that in the easy-plane anisotropy regime, intermediate between the XX and Heisenberg limits, the general scaling form of the thermodynamic properties is essentially given by the exactly-known XX behavior, providing a classification of the effects of aperiodicity on XXZ chains. We also discuss the nature of the ground-state structures, and their comparison with the random-singlet phase, characteristic of random-bond chains.Comment: Minor corrections; published versio

    Effective chiral-spin Hamiltonian for odd-numbered coupled Heisenberg chains

    Full text link
    An L×∞L \times \infty system of odd number of coupled Heisenberg spin chains is studied using a degenerate perturbation theory, where LL is the number of coupled chains. An effective chain Hamiltonian is derived explicitly in terms of two spin half degrees of freedom of a closed chain of LL sites, valid in the regime the inter-chain coupling is stronger than the intra-chain coupling. The spin gap has been calculated numerically using the effective Hamiltonian for L=3,5,7,9L=3,5,7,9 for a finite chain up to ten sites. It is suggested that the ground state of the effective Hamiltonian is correlated, by examining variational states for the effective chiral-spin chain Hamiltonian.Comment: 9 Pages, Latex, report ICTP-94-28

    Charmonium-Nucleon Dissociation Cross Sections in the Quark Model

    Full text link
    Charmonium dissociation cross sections due to flavor-exchange charmonium-baryon scattering are computed in the constituent quark model. We present results for inelastic J/ψNJ/\psi N and ηcN\eta_c N scattering amplitudes and cross sections into 46 final channels, including final states composed of various combinations of DD, D∗D^*, Σc\Sigma_c, and Λc\Lambda_c. These results are relevant to experimental searches for the deconfined phase of quark matter, and may be useful in identifying the contribution of initial ccˉc\bar c production to the open-charm final states observed at RHIC through the characteristic flavor ratios of certain channels. These results are also of interest to possible charmonium-nucleon bound states.Comment: 10 pages, 5 eps figures, revte

    When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

    Get PDF
    Tree frogs need to adhere to surfaces of various roughnesses in their natural habitats; these include bark, leaves and rocks. Rough surfaces can alter the effectiveness of their toe pads, due to factors such as a change of real contact area and abrasion of the pad epithelium. Here, we tested the effect of surface roughness on the attachment abilities of the tree frog Litoria caerulea. This was done by testing shear and adhesive forces on artificial surfaces with controlled roughness, both on single toe pads and whole animal scales. It was shown that frogs can stick 2–3 times better on small scale roughnesses (3–6 µm asperities), producing higher adhesive and frictional forces, but relatively poorly on the larger scale roughnesses tested (58.5–562.5 µm asperities). Our experiments suggested that, on such surfaces, the pads secrete insufficient fluid to fill the space under the pad, leaving air pockets that would significantly reduce the Laplace pressure component of capillarity. Therefore, we measured how well the adhesive toe pad would conform to spherical asperities of known sizes using interference reflection microscopy. Based on experiments where the conformation of the pad to individual asperities was examined microscopically, our calculations indicate that the pad epithelium has a low elastic modulus, making it highly deformable
    • …
    corecore