99 research outputs found

    Microwave-frequency scanning gate microscopy of a Si/SiGe double quantum dot

    Full text link
    Conventional quantum transport methods can provide quantitative information on spin, orbital, and valley states in quantum dots, but often lack spatial resolution. Scanning tunneling microscopy, on the other hand, provides exquisite spatial resolution of the local electronic density of states, but often at the expense of speed. Working to combine the spatial resolution and energy sensitivity of scanning probe microscopy with the speed of microwave measurements, we couple a metallic probe tip to a Si/SiGe double quantum dot that is integrated with a local charge detector. We first demonstrate that a dc-biased tip can be used to change the charge occupancy of the double dot. We then apply microwave excitation through the scanning tip to drive photon-assisted tunneling transitions in the double dot. We infer the double dot energy level diagram from the frequency and detuning dependence of the photon-assisted tunneling resonance condition. These measurements allow us to resolve \sim65 μ\mueV excited states, an energy scale consistent with typical valley splittings in Si/SiGe. Future extensions of this approach may allow spatial mapping of the valley splitting in Si devices, which is of fundamental importance for spin-based quantum processors

    Directional ballistic transport in the two-dimensional metal PdCoO2

    Full text link
    In an idealized infinite crystal, the material properties are constrained by the symmetries of its unit cell. Naturally, the point-group symmetry is broken by the sample shape of any finite crystal, yet this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from anisotropic Fermi surfaces are needed. Here we show how strongly facetted Fermi surfaces and long quasiparticle mean free paths present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. Bar shaped transport devices narrower than the mean free path are carved from single crystals using focused ion beam (FIB) milling, such that the ballistic charge carriers at low temperatures frequently collide with both sidewalls defining a channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and transverse voltages appear in zero magnetic field. We robustly identify the channel direction as the source of symmetry breaking via ballistic Monte- Carlo simulations and numerical solution of the Boltzmann equation

    Fanny Copeland and the geographical imagination

    Get PDF
    Raised in Scotland, married and divorced in the English south, an adopted Slovene, Fanny Copeland (1872 – 1970) occupied the intersection of a number of complex spatial and temporal conjunctures. A Slavophile, she played a part in the formation of what subsequently became the Kingdom of Yugoslavia that emerged from the First World War. Living in Ljubljana, she facilitated the first ‘foreign visit’ (in 1932) of the newly formed Le Play Society (a precursor of the Institute of British Geographers) and guided its studies of Solčava (a then ‘remote’ Alpine valley system) which, led by Dudley Stamp and commended by Halford Mackinder, were subsequently hailed as a model for regional studies elsewhere. Arrested by the Gestapo and interned in Italy during the Second World War, she eventually returned to a socialist Yugoslavia, a celebrated figure. An accomplished musician, linguist, and mountaineer, she became an authority on (and populist for) the Julian Alps and was instrumental in the establishment of the Triglav National Park. Copeland’s role as participant observer (and protagonist) enriches our understanding of the particularities of her time and place and illuminates some inter-war relationships within G/geography, inside and outside the academy, suggesting their relative autonomy in the production of geographical knowledge

    Directional ballistic transport in the two-dimensional metal PdCoO2

    Get PDF
    This project was supported by the Max Planck Society and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MiTopMat, grant agreement no. 715730). M.D.B. and P.H.M. acknowledge EPSRC for PhD studentship support through grant number EP/L015110/1. Research in Dresden benefits from the environment of the Excellence Cluster ct.qmat. A.S. acknowledges support from an ARCS Foundation Fellowship, a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.S. would thanks Z. Gomez and E. Huang for helpful discussions and T. Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by the DOE under contract DE_AC02-05CH11231. T.S. acknowledges support from the Emergent Phenomena in Quantum Systems initiative of the Gordon and Betty Moore Foundation, and from the Natural Sciences and Engineering Research Council of Canada (NSERC), in particular the Discovery Grant (RGPIN-2020-05842), Accelerator Supplement (RGPAS-2020-00060) and Discovery Launch Supplement (DGECR-2020-00222). T.S. contributed to this work prior to joining AWS. D.G.-G.’s and A.W.B.’s involvement in calculations was supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under contract DE-AC02-76SF00515. E.Z. and M.M. thank the International Max Planck Research School for Chemistry and Physics of Quantum Materials (IMPRS-CPQM) for financial support. G.B. and D.A.B. acknowledge support from the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant RGPIN-2018-04280) and from the Canada First Research Excellence Fund.In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking.Publisher PDFPeer reviewe

    Super-geometric electron focusing on the hexagonal Fermi surface of PdCoO2

    Get PDF
    The project was supported by the Max-Planck Society and has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 715730). M.D.B. acknowledges studentship funding from EPSRC under grant no. EP/I007002/1. A.L.S. acknowledges support from a Ford Foundation Predoctoral Fellowship and a National Science Foundation Graduate Research Fellowship. A.L.S. would like to thank Edwin Huang for helpful discussions and Tom Devereaux for letting us use his group cluster. Computational work was performed on the Sherlock cluster at Stanford University and on resources of the National Energy Research Scientific Computing Center, supported by DOE under contract DE_AC02-05CH11231. D.G.G.’s and A.W.B.’s work was supported by the U.S. Department of Energy, Office of Science, Basic EnergySciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-76SF00515.Geometric electron optics may be implemented in solids when electron transport is ballistic on the length scale of a device. Currently, this is realized mainly in 2D materials characterized by circular Fermi surfaces. Here we demonstrate that the nearly perfectly hexagonal Fermi surface of PdCoO2 gives rise to highly directional ballistic transport. We probe this directional ballistic regime in a single crystal of PdCoO2 by use of focused ion beam (FIB) micro-machining, defining crystalline ballistic circuits with features as small as 250 nm. The peculiar hexagonal Fermi surface naturally leads to enhanced electron self-focusing effects in a magnetic field compared to circular Fermi surfaces. This super-geometric focusing can be quantitatively predicted for arbitrary device geometry, based on the hexagonal cyclotron orbits appearing in this material. These results suggest a novel class of ballistic electronic devices exploiting the unique transport characteristics of strongly faceted Fermi surfaces.Publisher PDFPeer reviewe

    Sp(4) gauge theory on the lattice: towards SU(4)/Sp(4) composite Higgs (and beyond)

    Get PDF
    The Sp(4) gauge theory with two Dirac fundamental flavours provides a candidate for the microscopic origin of composite-Higgs models based on the SU(4)/Sp(4) coset. We employ a combination of two different, complementary strategies for the numerical lattice calculations, based on the Hybrid Monte Carlo and on the Heat Bath algorithms. We perform pure Yang-Mills, quenched computations and exploratory studies with dynamical Wilson fermions. We present the first results in the literature for the spectrum of glueballs of the pure Sp(4) Yang-Mills theory, an EFT framework for the interpretation of the masses and decay constants of the lightest pion, vector and axial-vector mesons, and a preliminary calculation of the latter in the quenched approximation. We show the first numerical evidence of a bulk phase transition in the lattice theory with dynamical Wilson fermions, and perform the technical steps necessary to set up future investigations of the mesonic spectrum of the full theory

    P2 receptor-mediated modulation of neurotransmitter release—an update

    Get PDF
    Presynaptic nerve terminals are equipped with a number of presynaptic auto- and heteroreceptors, including ionotropic P2X and metabotropic P2Y receptors. P2 receptors serve as modulation sites of transmitter release by ATP and other nucleotides released by neuronal activity and pathological signals. A wide variety of P2X and P2Y receptors expressed at pre- and postsynaptic sites as well as in glial cells are involved directly or indirectly in the modulation of neurotransmitter release. Nucleotides are released from synaptic and nonsynaptic sites throughout the nervous system and might reach concentrations high enough to activate these receptors. By providing a fine-tuning mechanism these receptors also offer attractive sites for pharmacotherapy in nervous system diseases. Here we review the rapidly emerging data on the modulation of transmitter release by facilitatory and inhibitory P2 receptors and the receptor subtypes involved in these interactions
    corecore