2,073 research outputs found

    Around 200 new X-ray binary IDs from 13 years of Chandra observations of the M31 center

    Full text link
    We have created 0.3--10 keV, 13 year, unabsorbed luminosity lightcurves for 528 X-ray sources in the central 20' of M31. We have 174 Chandra observations spaced at ~1 month intervals thanks to our transient monitoring program, deeper observations of the M31 nucleus, and some public data from other surveys. We created 0.5--4.5 keV structure functions (SFs) for each source, for comparison with the ensemble structure function of AGN. We find 220 X-ray sources with luminosities > ~1E+35 erg/s that have SFs with significantly more variability than the ensemble AGN SF, and are likely X-ray binaries (XBs). A further 30 X-ray sources were identified as XBs using other methods. We therefore have 250 probable XBs in total, including ~200 new identifications. This result represents great progress over the ~50 XBs and ~40 XB candidates previously identified out of the ~2000 X-ray sources within the D_25 region of M31; it also demonstrates the power of SF analysis for identifying XBs in external galaxies. We also identify a new transient black hole candidate, associated with the M31 globular cluster B128.Comment: Accepted for publication in ApJ; 20 pages, 7 figures; Tables 1 and 2 continue after the references (8 pages

    Four new black hole candidates identified in M31 globular clusters with Chandra and XMM-Newton

    Full text link
    We have identified four new black hole candidates in M31 globular clusters using 123 Chandra, and 4 XMM-Newton observations of the M31 central region. The X-ray source associated with Bo 163 (XB163) is a recurrent transient, with the highest luminosity ~1.4E+38 erg/s, considerably brighter than any outbursts from the neutron star transients Aql X-1 or 4U 1608-452; the outburst apparently started ~45 days earlier than the observed peak, hence the luminosity could have been considerably higher. We identified XB082, XB153 and XB185 as BHCs by observing "low state" emission spectra at luminosities that exceed the threshold for neutron star binaries. The probability that these are neutron star systems with anisotropic emission beamed toward us is <4E-4, and their variability suggests emission from a single source. We therefore conclude that these systems likely contain black holes rather than neutron stars. We have now identified 4 persistently bright BHCs in the region; the probability that these are all background AGN is <1E-20. According to theory, the donors could be tidally captured main sequence stars, or white dwarves in ultra-compact binaries. We find that GCs that are particularly massive (XB082) or metal rich (XB144) can host bright X-ray sources in addition to those that are both (XB163). Our method may reveal BHCs in other bright X-ray sources.Comment: Accepted for publication in ApJ. 17 pages, 5 figure

    Identication-robust moment-based tests for Markov switching in autoregressive models

    Get PDF
    This paper develops tests of the null hypothesis of linearity in the context of autoregressive models with Markov-switching means and variances. These tests are robust to the identification failures that plague conventional likelihood-based inference methods. The approach exploits the moments of normal mixtures implied by the regime-switching process and uses Monte Carlo test techniques to deal with the presence of an autoregressive component in the model specification. The proposed tests have very respectable power in comparison with the optimal tests for Markov-switching parameters of Carrasco et al. (2014), and they are also quite attractive owing to their computational simplicity. The new tests are illustrated with an empirical application to an autoregressive model of USA output growth

    Solitonic supersymmetry restoration

    Full text link
    Q-balls are a possible feature of any model with a conserved, global U(1) symmetry and no massless, charged scalars. It is shown that for a broad class of models of metastable supersymmetry breaking they are extremely influential on the vacuum lifetime and make seemingly viable vacua catastrophically short lived. A net charge asymmetry is not required as there is often a significant range of parameter space where statistical fluctuations alone are sufficient. This effect is examined for two supersymmetry breaking scenarios. It is found that models of minimal gauge mediation (which necessarily have a messenger number U(1)) undergo a rapid, supersymmetry restoring phase transition unless the messenger mass is greater than 10^8 GeV. Similarly the ISS model, in the context of direct mediation, quickly decays unless the perturbative superpotential coupling is greater than the Standard Model gauge couplings.Comment: 17 pages, 3 figures, minor comments added, accepted for publication in JHE

    Dynamical completions of generalized O'Raifeartaigh models

    Get PDF
    We present gauge theory completions of Wess-Zumino models admitting supersymmetry breaking vacua with spontaneously broken R-symmetry. Our models are simple deformations of generalized ITIY models, a supersymmetric theory with gauge group Sp(N), N+1 flavors plus singlets, with a modified tree level superpotential which explicitly breaks (part of) the global symmetry. Depending on the nature of the deformation, we obtain effective O'Raifeartaigh-like models whose pseudomoduli space is locally stable in a neighborhood of the origin of field space, or in a region not including it. Hence, once embedded in direct gauge mediation scenarios, our models can give low energy spectra with either suppressed or unsuppressed gaugino mass.Comment: 21 pages, 1 figure; v3: reference adde

    Goldstones in Diphotons

    Full text link
    We study the conditions for a new scalar resonance to be observed first in diphotons at the LHC Run-2. We focus on scenarios where the scalar arises either from an internal or spacetime symmetry broken spontaneously, for which the mass is naturally below the cutoff and the low-energy interactions are fixed by the couplings to the broken currents, UV anomalies, and selection rules. We discuss the recent excess in diphoton resonance searches observed by ATLAS and CMS at 750 GeV, and explore its compatibility with other searches at Run-1 and its interpretation as Goldstone bosons in supersymmetry and composite Higgs models. We show that two candidates naturally emerge: a Goldstone boson from an internal symmetry with electromagnetic anomalies, and the scalar partner of the Goldstone of supersymmetry breaking: the sgoldstino. The dilaton from conformal symmetry breaking is instead disfavoured by present data, in its minimal natural realization.Comment: 18 pages + refs, 2 figures. v2: typos corrected, references added, discussions extended and three new plots. Conclusion unchanged. v3: published versio

    ‘O sibling, where art thou?’ – a review of avian sibling recognition with respect to the mammalian literature

    Get PDF
    Avian literature on sibling recognition is rare compared to that developed by mammalian researchers. We compare avian and mammalian research on sibling recognition to identify why avian work is rare, how approaches differ and what avian and mammalian researchers can learn from each other. Three factors: (1) biological differences between birds and mammals, (2) conceptual biases and (3) practical constraints, appear to influence our current understanding. Avian research focuses on colonial species because sibling recognition is considered adaptive where ‘mixing potential’ of dependent young is high; research on a wider range of species, breeding systems and ecological conditions is now needed. Studies of acoustic recognition cues dominate avian literature; other types of cues (e.g. visual, olfactory) deserve further attention. The effect of gender on avian sibling recognition has yet to be investigated; mammalian work shows that gender can have important influences. Most importantly, many researchers assume that birds recognise siblings through ‘direct familiarisation’ (commonly known as associative learning or familiarity); future experiments should also incorporate tests for ‘indirect familiarisation’ (commonly known as phenotype matching). If direct familiarisation proves crucial, avian research should investigate how periods of separation influence sibling discrimination. Mammalian researchers typically interpret sibling recognition in broad functional terms (nepotism, optimal outbreeding); some avian researchers more successfully identify specific and testable adaptive explanations, with greater relevance to natural contexts. We end by reporting exciting discoveries from recent studies of avian sibling recognition that inspire further interest in this topic

    A Light Stop with Flavor in Natural SUSY

    Full text link
    The discovery of a SM-like Higgs boson near 125 GeV and the flavor texture of the Standard Model motivate the investigation of supersymmetric quiver-like BSM extensions. We study the properties of such a minimal class of models which deals naturally with the SM parameters. Considering experimental bounds as well as constraints from flavor physics and Electro-Weak Precision Data, we find the following. In a self-contained minimal model - including the full dynamics of the Higgs sector - top squarks below a TeV are in tension with b->s{\gamma} constraints. Relaxing the assumption concerning the mass generation of the heavy Higgses, we find that a stop not far from half a TeV is allowed. The models have some unique properties, e.g. an enhancement of the h-> b\bar{b},\tau\bar{{\tau}} decays relative to the h->\gamma{\gamma} one, a gluino about 3 times heavier than the stop, an inverted hierarchy of about 3-20 between the squarks of the first two generations and the stop, relatively light Higgsino neutralino or stau NLSP, as well as heavy Higgses and a W' which may be within reach of the LHC.Comment: LaTeX, 22 pages, 4 figures; V2: references adde
    corecore