12 research outputs found

    Preliminary safety and efficacy of first-line pertuzumab combined with trastuzumab and taxane therapy for HER2-positive locally recurrent or metastatic breast cancer (PERUSE).

    Get PDF
    BACKGROUND: Pertuzumab combined with trastuzumab and docetaxel is the standard first-line therapy for HER2-positive metastatic breast cancer, based on results from the phase III CLEOPATRA trial. PERUSE was designed to assess the safety and efficacy of investigator-selected taxane with pertuzumab and trastuzumab in this setting. PATIENTS AND METHODS: In the ongoing multicentre single-arm phase IIIb PERUSE study, patients with inoperable HER2-positive advanced breast cancer (locally recurrent/metastatic) (LR/MBC) and no prior systemic therapy for LR/MBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab [8\u2009mg/kg loading dose, then 6\u2009mg/kg every 3\u2009weeks (q3w)] and pertuzumab (840\u2009mg loading dose, then 420\u2009mg q3w) until disease progression or unacceptable toxicity. The primary end point was safety. Secondary end points included overall response rate (ORR) and progression-free survival (PFS). RESULTS: Overall, 1436 patients received at least one treatment dose (initially docetaxel in 775 patients, paclitaxel in 589, nab-paclitaxel in 65; 7 discontinued before starting taxane). Median age was 54\u2009years; 29% had received prior trastuzumab. Median treatment duration was 16\u2009months for pertuzumab and trastuzumab and 4\u2009months for taxane. Compared with docetaxel-containing therapy, paclitaxel-containing therapy was associated with more neuropathy (all-grade peripheral neuropathy 31% versus 16%) but less febrile neutropenia (1% versus 11%) and mucositis (14% versus 25%). At this preliminary analysis (52 months' median follow-up), median PFS was 20.6 [95% confidence interval (CI) 18.9-22.7] months overall (19.6, 23.0 and 18.1\u2009months with docetaxel, paclitaxel and nab-paclitaxel, respectively). ORR was 80% (95% CI 78%-82%) overall (docetaxel 79%, paclitaxel 83%, nab-paclitaxel 77%). CONCLUSIONS: Preliminary findings from PERUSE suggest that the safety and efficacy of first-line pertuzumab, trastuzumab and taxane for HER2-positive LR/MBC are consistent with results from CLEOPATRA. Paclitaxel appears to be a valid alternative taxane backbone to docetaxel, offering similar PFS and ORR with a predictable safety profile. CLINICALTRIALS.GOV: NCT01572038

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF
    Background: The phase III CLinical Evaluation Of Pertuzumab And TRAstuzumab (CLEOPATRA) trial established the combination of pertuzumab, trastuzumab and docetaxel as standard first-line therapy for human epidermal growth factor receptor 2 (HER2)-positive locally recurrent/metastatic breast cancer (LR/mBC). The multicentre single-arm PERtUzumab global SafEty (PERUSE) study assessed the safety and efficacy of pertuzumab and trastuzumab combined with investigator-selected taxane in this setting. Patients and methods: Eligible patients with inoperable HER2-positive LR/mBC and no prior systemic therapy for LR/mBC (except endocrine therapy) received docetaxel, paclitaxel or nab-paclitaxel with trastuzumab and pertuzumab until disease progression or unacceptable toxicity. The primary endpoint was safety. Secondary endpoints included progression-free survival (PFS) and overall survival (OS). Prespecified subgroup analyses included subgroups according to taxane, hormone receptor (HR) status and prior trastuzumab. Exploratory univariable analyses identified potential prognostic factors; those that remained significant in multivariable analysis were used to analyse PFS and OS in subgroups with all, some or none of these factors. Results: Of 1436 treated patients, 588 (41%) initially received paclitaxel and 918 (64%) had HR-positive disease. The most common grade 653 adverse events were neutropenia (10%, mainly with docetaxel) and diarrhoea (8%). At the final analysis (median follow-up: 5.7 years), median PFS was 20.7 [95% confidence interval (CI) 18.9-23.1] months overall and was similar irrespective of HR status or taxane. Median OS was 65.3 (95% CI 60.9-70.9) months overall. OS was similar regardless of taxane backbone but was more favourable in patients with HR-positive than HR-negative LR/mBC. In exploratory analyses, trastuzumab-pretreated patients with visceral disease had the shortest median PFS (13.1 months) and OS (46.3 months). Conclusions: Mature results from PERUSE show a safety and efficacy profile consistent with results from CLEOPATRA and median OS exceeding 5 years. Results suggest that paclitaxel is a valid alternative to docetaxel as backbone chemotherapy. Exploratory analyses suggest risk factors that could guide future trial design

    Final results from the PERUSE study of first-line pertuzumab plus trastuzumab plus a taxane for HER2-positive locally recurrent or metastatic breast cancer, with a multivariable approach to guide prognostication

    Get PDF

    Phase III Trial of Adjuvant Capecitabine After Standard Neo-/Adjuvant Chemotherapy in Patients With Early Triple-Negative Breast Cancer (GEICAM/2003-11_CIBOMA/2004-01)

    No full text
    PURPOSE: Operable triple-negative breast cancers (TNBCs) have a higher risk of relapse than non-TNBCs with standard therapy. The GEICAM/2003-11_CIBOMA/2004-01 trial explored extended adjuvant capecitabine after completion of standard chemotherapy in patients with early TNBC. PATIENTS AND METHODS: Eligible patients were those with operable, node-positive-or node negative with tumor 1 cm or greater-TNBC, with prior anthracycline- and/or taxane-containing chemotherapy. After central confirmation of TNBC status by immunohistochemistry, patients were randomly assigned to either capecitabine or observation. Stratification factors included institution, prior taxane-based therapy, involved axillary lymph nodes, and centrally determined phenotype (basal v nonbasal, according to cytokeratins 5/6 and/or epidermal growth factor receptor positivity by immunohistochemistry). The primary objective was to compare disease-free survival (DFS) between both arms. RESULTS: Eight hundred seventy-six patients were randomly assigned to capecitabine (n = 448) or observation (n = 428). Median age was 49 years, 55.9% were lymph node negative, 73.9% had a basal phenotype, and 67.5% received previous anthracyclines plus taxanes. Median length of follow-up was 7.3 years. DFS was not significantly prolonged with capecitabine versus observation [hazard ratio (HR), 0.82; 95% CI, 0.63 to 1.06; P = .136]. In a preplanned subgroup analysis, nonbasal patients seemed to derive benefit from the addition of capecitabine with a DFS HR of 0.53 versus 0.94 in those with basal phenotype (interaction test P = .0694) and an HR for overall survival of 0.42 versus 1.23 in basal phenotype (interaction test P = .0052). Tolerance of capecitabine was as expected, with 75.2% of patients completing the planned 8 cycles. CONCLUSION: This study failed to show a statistically significant increase in DFS by adding extended capecitabine to standard chemotherapy in patients with early TNBC. In a preplanned subset analysis, patients with nonbasal phenotype seemed to obtain benefit with capecitabine, although this will require additional validation

    Biological activity and specificity of Miridae-induced plant volatiles

    Full text link
    [EN] The ability of zoophytophagous predators to produce defensive plant responses due to their phytophagous behavior has been recently demonstrated. In the case of tomatoes, the mirids Nesidiocoris tenuis and Macrolophus pygmaeus are able to attract or repel pests and/or natural enemies in different ways. Nevertheless, the herbivore-induced plant volatiles (HIPVs) released by the phytophagy of both mirids, which are responsible for these behaviors, are unknown. In this work, the HIPVs produced by the plant feeding of N. tenuis and M. pygmaeus were characterized. In addition, the role of each HIPV in the repellence or attraction of two tomato pests, Bemisia tabaci and Tuta absoluta, and of the natural enemy Encarsia formosa was evaluated. Six green leaf volatiles (GLVs) plus methyl salicylate and octyl acetate clearly stood out as major differential peaks on the chromatogram in a directed analysis. The six GLV and methyl salicylate were repellent for B. tabaci and attractive to E. formosa, whereas they showed no effect on T. absoluta. Octyl acetate, which was significantly present only in the M. pygmaeus-punctured plants, was significantly attractive to T. absoluta, repellent to E. formosa and indifferent to B. tabaci. Unlike the remaining HIPVs, octyl acetate was emitted directly by M. pygmaeus and not by the plant. Our results showed that mirid herbivory could modulate the pest and natural plant enemy locations, since tomato plants release a blend of volatiles in response to this activity. These results could serve as a basis for future development of plant protection.The research leading to these results was funded by the Spanish Ministry of Economy and Competitiveness (AGL2014-55616-C3). The authors thank Javier Calvo (KOPPERT BS) for the supply of insects, and Sandra Fresquet and Virginia Pedroche for their technical assistance. MP-H was the recipient of a research fellowship from the INIA Spain (Subprogram DOC-INIA-CCAA). Analyses of volatile compounds were performed in the Metabolomics service facilities at IBMCP.Pérez-Hedo, M.; Granell Richart, A.; Rambla Nebot, JL.; Urbaneja Garcia, A. (2017). Biological activity and specificity of Miridae-induced plant volatiles. BioControl. 63(2):203-213. https://doi.org/10.1007/s10526-017-9854-4S203213632Abbas S, Pérez-Hedo M, Colazza S, Urbaneja A (2014) The predatory mirid Dicyphus maroccanus as a new potential biological control agent in tomato crops. BioControl 59:565–574Ardanuy A, Albajes R, Turlings TC (2016) Innate and learned prey-searching behavior in a generalist predator. J Chem Ecol 42:497–507Arnó J, Gabarra R, Liu TX, Simmons AM, Gerling D (2010) Natural enemies of Bemisia tabaci: predators and parasitoids. In: Stansly PA, Naranjo SE (eds) Bemisia: bionomics and management of a global pest. Springer, Dordrecht, pp 385–421Attygalle AB, Jham GN, Svatos A, Frighetto RTS, Ferrara FA, Vilela EF, Uchôa-Fernandes MA, Meinwald J (1996) 3E,8Z,11Z)-3,8,11-tetradecatrienyl acetate, major sex pheromone component of the tomato pest Scrobipalpuloides absoluta (Lepidoptera: Gelechiidae. Bioorg Med Chem 4:305–314Barnadas I, Gabarra R, Albajes R (1998) Predatory capacity of two mirid bugs preying on Bemisia tabaci. Entomol Exp Appl 86:215–219Bernasconi ML, Turlings TCJ, Ambrosetti L, Bassetti P, Dorn S (1998) Herbivore-induced emissions of maize volatiles repel the corn leaf aphid, Rhopalosiphum maidis. Entomol Exp Appl 87:133–142Biondi A, Zappalà L, Di Mauro A, Tropea Garzia G, Russo A, Desneux N, Siscaro G (2016) Can alternative host plant and prey affect phytophagy and biological control by the zoophytophagous mirid Nesidiocoris tenuis? BioControl 61:79–90Bukovinszky T, Gols R, Posthumus MA, Vet LE, van Lenteren JC (2005) Variation in plant volatiles and attraction of the parasitoid Diadegma semiclausum (Hellén). J Chem Ecol 31:461–480Calvo FJ, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54:237–246Calvo FJ, Soriano J, Bolckmans K, Belda JE (2012) A successful method for whitefly and Tuta absoluta control in tomato. Evaluation after two years of application in practice. IOBC/WPRS Bull 80:237–244Castañé C, Arnó J, Gabarra R, Alomar O (2011) Plant damage to vegetable crops by zoophytophagous mirid predators. Biol Control 59:22–29Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33:997–1012Dicke M (1999) Are herbivore-induced plant volatiles reliable indicators of herbivore identity to foraging carnivorous arthropods? Entomol Exp Appl 91:131–142Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 135:1893–1902Eubanks MD, Denno RF (1999) The ecological consequences of variation in plants and prey for an omnivorous insect. Ecology 80:1253–1266Frost CJ, Mescher MC, Carlson JE, De Moraes CM (2008) Plant defense priming against herbivores: getting ready for a different battle. Plant Physiol 146:818–824Gillespie DR, Mcgregor RR (2000) The functions of plant feeding in the omnivorous predator Dicyphus hesperus: water places limits on predation. Ecol Entomol 25:380–386Giunti G, Benelli G, Palmeri V, Canale A (2017) Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning. Bull Entomol Res. https://doi.org/10.1017/S0007485317000451James DG (2005) Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects. J Chem Ecol 31:481–495Kappers IF, Aharoni A, van Herpen TW, Luckerhoff LL, Dicke M, Bouwmeester HJ (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309:2070–2072Kessler A, Baldwin IT (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291:2141–2144Leitner M, Boland W, Mithöfer A (2005) Direct and indirect defences induced by piercing-sucking and chewing herbivores in Medicago truncatula. New Phytol 167:597–606Levi-Zada A, Sadowsky A, Dobrinin S, David M, Ticuchinski T, Fefer D, Greenberg A, Blumberg D (2013) Reevaluation of the sex pheromone of the lesser date moth, Batrachedra amydraula, using autosampling SPME-GC/MS and field bioassays. Chemoecology 23:13–24Messelink GJ, Bloemhard CMJ, Hoogerbrugge H, van Schelt J, Ingegno BL, Tavella L (2015) Evaluation of mirid predatory bugs and release strategy for aphid control in sweet pepper. J Appl Entomol 139:333–341Millar JG, Rice RE (1998) Sex pheromone of the plant bug Phytocoris californicus (Heteroptera: Miridae). J Econ Entomol 91:132–137Millar JG, Rice RE, Wang Q (1997) Sex pheromone of the mirid bug Phytocoris relativus. J Chem Ecol 23:1743–1754Naselli M, Urbaneja A, Siscaro G, Jaques JA, Zappalà L, Flors V, Pérez-Hedo M (2016a) Stage-related defense response induction in tomato plants by Nesidiocoris tenuis. Int J Mol Sci 17:1210–1223Naselli M, Zappalà L, Gugliuzzo A, Tropea Garzia G, Biondi A, Rapisarda C, Cincotta F, Condurso C, Verzera A, Siscaro G (2016b) Olfactory response of the zoophytophagous mirid Nesidiocoris tenuis to tomato and alternative host plants. Arthropod-Plant Interact 11:121–131Ozawa R, Shiojiri K, Sabelis MW, Takabayashi J (2008) Maize plants sprayed with either jasmonic acid or its precursor, methyl linolenate, attract armyworm parasitoids, but the composition of attractants differs. Entomol Exp Appl 129:189–199Pappas ML, Steppuhn A, Geuss D, Topalidou N, Zografou A, Sabelis MW, Broufas GD (2015) Beyond predation: the zoophytophagous predator Macrolophus pygmaeus induces tomato resistance against spider mites. PLoS ONE 10(5):e0127251Paré PW, Tumlinson JH (1999) Plant volatiles as a defence against insect herbivores. Plant Physiol 121:325–331Perdikis D, Fantinou A, Lykouressis D (2011) Enhancing pest control in annual crops by conservation of predatory Heteroptera. Biol Control 59:13–21Pérez-Hedo M, Urbaneja A (2015) Prospects for predatory mirid bugs as biocontrol agents of aphids in sweet peppers. J Pest Sci 88:65–73Pérez-Hedo M, Urbaneja A (2016) The zoophytophagous predator Nesidiocoris tenuis: a successful but controversial biocontrol agent in tomato crops. In: Horowitz AR, Ishaaya I (eds) Advances in insect control and resistance management. Springer International Publishing, Cham, pp 121–138Pérez-Hedo M, Suay R, Alonso M, Ruocco M, Giorgini M, Poncet C, Urbaneja A (2017) Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Prot 97:119–127Pérez-Hedo M, Urbaneja-Bernat P, Jaques JA, Flors V, Urbaneja A (2015a) Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J Pest Sci 88:543–554Pérez-Hedo M, Bouagga S, Jaques JA, Flors V, Urbaneja A (2015b) Tomato plant responses to feeding behavior of three zoophytophagous predators (Hemiptera: Miridae). Biol Control 86:46–51Rodriguez-Saona C, Kaplan I, Braasch J, Chinnasamy D, Williams L (2011) Field responses of predaceous arthropods to methyl salicylate: a meta-analysis and case study in cranberries. Biol Control 59:294–303Sabelis MW, Janssen A, Pallini A, Venzon M, Bruin J, Drukker B, Scutareanuu P (1999) Behavioural responses of predatory and herbivorous arthropods to induced plant volatiles: From evolutionary ecology to agricultural applications. In: Agrawal A, Tuzun S, Bent E (eds) Induced plant defenses against pathogens and herbivores. American Phytopathological Society Press, St. Paul, pp 269–296Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498Sanchez JA, Gillespie DR, McGregor RR (2004) Plant preference in relation to life history traits in the zoophytophagous predator Dicyphus hesperus. Entomol Exp Appl 112:7–19Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S, Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J (2006) Changing green leaf volatile biosynthesis in plants: an approach for improving plant resistance against both herbivores and pathogens. Proc Natl Acad Sci USA 103:16672–16676Sinia A, Roitberg B, McGregor RR, Gillespie DR (2004) Prey feeding increases water stress in the omnivorous predator Dicyphus hesperus. Entomol Exp Appl 110:243–248Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253Turlings TCJ, Bernasconi M, Bertossa R, Bigler F, Caloz G, Dorn S (1998) The induction of volatile emissions in maize by three herbivore species with different feeding habits: possible consequences for their natural enemies. Biol Control 11:122–129Ulland S, Ian E, Mozuraitis R, Borg-Karlson AK, Meadow R, Mustaparta H (2008) Methyl salicylate, identified as primary odorant of a specific receptor neuron type, inhibits oviposition by the moth Mamestra brassicae L. (Lepidoptera, Noctuidae). Chem Senses 33:35–46Urbaneja A, Tapia G, Stansly P (2005) Influence of host plant and prey availability on developmental time and survivorship of Nesidiocoris tenuis (Het.: Miridae). Biocontrol Sci Techn 15:513–518Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296Urbaneja A, González-Cabrera J, Arnó J, Gabarra R (2012) Prospects for the biological control of Tuta absoluta in tomatoes of the Mediterranean basin. Pest Manag Sci 68:1215–1222van Lenteren J, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2017) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl. https://doi.org/10.1007/s10526-017-9801-4Wager BR, Breed MD (2000) Does honey bee sting alarm pheromone give orientation information to defensive bees? Ann Entomol Soc Am 93:1329–1332Wang Z, Wen P, Qu Y, Dong S, Li J, Tan K, Nieh JC (2016) Bees eavesdrop upon informative and persistent signal compounds in alarm pheromones. Sci Rep-UK 6:25693War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320Yamashita KI, Isayama S, Ozawa R, Uefune M, Takabayashi J, Miura K (2016) A pecky rice-causing stink bug Leptocorisa chinensis escapes from volatiles emitted by excited conspecifics. J Ethol 34:1–7Zappala L, Biondi A, Alma A, Al-Jboory IJ, Arno J, Bayram A, Chailleux A, El-Arnaouty A, Gerling D, Guenaoui Y, Shaltiel-Harpaz L, Siscaro G, Stavrinides M, Tavella L, Aznar RV, Urbaneja A, Desneux N (2013) Natural enemies of the South American moth, Tuta absoluta, in Europe, North Africa and Middle East, and their potential use in pest control strategies. J Pest Sci 86:635–647Zappalà L, Siscaro G, Biondi A, Mollá O, González-Cabrera J, Urbaneja A (2012) Efficacy of sulphur on Tuta absoluta and its side effects on the predator Nesidiocoris tenuis. J App Entomol 136:401–409Zhang QH, Aldrich JR (2008) Sex pheromone of the plant bug, Phytocoris calli Knight. J Chem Ecol 34:719–724Zhou S, Lou YR, Tzin V, Jander G (2015) Alteration of plant primary metabolism in response to insect herbivory. Plant Physiol 169:1488–149

    Natural Products Synthesis: Enabling Tools To Penetrate Nature’s Secrets of Biogenesis and Biomechanism

    No full text
    corecore