322 research outputs found
QCSP on partially reflexive forests
We study the (non-uniform) quantified constraint satisfaction problem QCSP(H)
as H ranges over partially reflexive forests. We obtain a complexity-theoretic
dichotomy: QCSP(H) is either in NL or is NP-hard. The separating condition is
related firstly to connectivity, and thereafter to accessibility from all
vertices of H to connected reflexive subgraphs. In the case of partially
reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL
or is Pspace-complete
On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction
The universal-algebraic approach has proved a powerful tool in the study of
the complexity of CSPs. This approach has previously been applied to the study
of CSPs with finite or (infinite) omega-categorical templates, and relies on
two facts. The first is that in finite or omega-categorical structures A, a
relation is primitive positive definable if and only if it is preserved by the
polymorphisms of A. The second is that every finite or omega-categorical
structure is homomorphically equivalent to a core structure. In this paper, we
present generalizations of these facts to infinite structures that are not
necessarily omega-categorical. (This abstract has been severely curtailed by
the space constraints of arXiv -- please read the full abstract in the
article.) Finally, we present applications of our general results to the
description and analysis of the complexity of CSPs. In particular, we give
general hardness criteria based on the absence of polymorphisms that depend on
more than one argument, and we present a polymorphism-based description of
those CSPs that are first-order definable (and therefore can be solved in
polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer
Science (LICS 2010). This version will appear in the LMCS special issue
associated with LICS 201
The complexity of quantified constraints using the algebraic formulation
Peer reviewedFinal Published versio
- …