322 research outputs found

    QCSP on partially reflexive forests

    Full text link
    We study the (non-uniform) quantified constraint satisfaction problem QCSP(H) as H ranges over partially reflexive forests. We obtain a complexity-theoretic dichotomy: QCSP(H) is either in NL or is NP-hard. The separating condition is related firstly to connectivity, and thereafter to accessibility from all vertices of H to connected reflexive subgraphs. In the case of partially reflexive paths, we give a refinement of our dichotomy: QCSP(H) is either in NL or is Pspace-complete

    On the Scope of the Universal-Algebraic Approach to Constraint Satisfaction

    Full text link
    The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The first is that in finite or omega-categorical structures A, a relation is primitive positive definable if and only if it is preserved by the polymorphisms of A. The second is that every finite or omega-categorical structure is homomorphically equivalent to a core structure. In this paper, we present generalizations of these facts to infinite structures that are not necessarily omega-categorical. (This abstract has been severely curtailed by the space constraints of arXiv -- please read the full abstract in the article.) Finally, we present applications of our general results to the description and analysis of the complexity of CSPs. In particular, we give general hardness criteria based on the absence of polymorphisms that depend on more than one argument, and we present a polymorphism-based description of those CSPs that are first-order definable (and therefore can be solved in polynomial time).Comment: Extended abstract appeared at 25th Symposium on Logic in Computer Science (LICS 2010). This version will appear in the LMCS special issue associated with LICS 201
    • …
    corecore