50 research outputs found

    The TNF-Ī± antagonist etanerceptreverses age-related decreases in colonic SERT expression and faecal output in mice

    Get PDF
    Treatment for chronic constipation in older people is challenging and the condition has a major impact on quality of life. A lack of understanding about the causes of this condition has hampered the development of effective treatments. 5-HT is an important pro-kinetic agent in the colon. We examined whether alterations in colonic 5-HT signalling underlie ageā€“related changes in faecal output in mice and whether these changes were due to an increase in TNF-Ī±. Components of the 5-HT signalling system (5-HT, 5-HIAA, SERT) and TNF-Ī± expression were examined in the distal colon of 3, 12, 18 and 24- month old mice and faecal output and water content monitored under control conditions and following the administration of etanercept (TNF-Ī± inhibitor; 1 mg Kg-1). Faecal output and water content were reduced in aged animals. Age increased mucosal 5-HT availability and TNF-Ī± expression and decreased mucosal SERT expression and 5-HIAA. Etanercept treatment of old mice reversed these changes, suggesting that age-related changes in TNFĪ± expression are an important regulator of mucosal 5-HT signalling and pellet output and water content in old mice. These data point to ā€œanti-TNFĪ±ā€ drugs as potential treatments for age-related chronic constipation

    Assessment of acute myocardial infarction: current status and recommendations from the North American society for cardiovascular imaging and the European society of cardiac radiology

    Get PDF
    There are a number of imaging tests that are used in the setting of acute myocardial infarction and acute coronary syndrome. Each has their strengths and limitations. Experts from the European Society of Cardiac Radiology and the North American Society for Cardiovascular Imaging together with other prominent imagers reviewed the literature. It is clear that there is a definite role for imaging in these patients. While comparative accuracy, convenience and cost have largely guided test decisions in the past, the introduction of newer tests is being held to a higher standard which compares patient outcomes. Multicenter randomized comparative effectiveness trials with outcome measures are required

    Zapatismo and Community-Based Social Change

    No full text

    Mucosal potassium efflux mediated via Kcnn4 channels provides the driving force for electrogenic anion secretion in colon

    No full text
    Intermediate conductance K+ (Kcnn4) channels are present in both mucosal and serosal membranes of colon. However, only serosal Kcnn4 channels have been shown to be essential for agonist-induced (cAMP and Ca2+) anion secretion. The present study sought to determine whether mucosal Kcnn4 channels also play a role in colonic anion secretion. Mucosal-to-serosal and serosal-to-mucosal unidirectional 86Rb (K+ surrogate) fluxes as well as short-circuit current (Isc; a measure of anion secretion) were measured under voltage-clamp conditions in distal colon from rats fed either a standard or K+-free diet. 5,6-Dichloro-1-ethyl-1,3-dihydro-2H-benzimidazole-2-one (DC-EBIO) was used to activate Kcnn4 channels. Mucosal DC-EBIO both induced K+ secretion and enhanced anion secretion in normal rat distal colon. The DC-EBIO-induced K+ secretion was completely blocked by nonspecific (Ba2+) and Kcnn4-specific (TRAM-34) inhibitors, but was not blocked by the large-conductance K+ (iberiotoxin), small-conductance K+ (apamin), or KCNQ1 (chromanol 293B) specific blockers. Ba2+ and TRAM-34 also inhibited DC-EBIO-enhanced anion secretion. The DC-EBIO-enhanced anion secretion was completely inhibited by the nonspecific anion channel blocker 5-nitro-2-(3-phenylpropyl-amino)benzoic acid, whereas it was only partially inhibited by CFTR [CFTRinh-172, glibenclamide]- and CaCC (niflumic acid)-specific Clāˆ’ channel blockers. In contrast, mucosal DC-EBIO-enhanced K+ and anion secretion was not present in distal colon of dietary K-depleted rats, indicating absence of mucosal Kcnn4 channels. These observations indicate that mucosal Kcnn4 channels are capable of driving agonist-induced anion secretion mediated via CFTR and CaCC and likely contribute to stool K+ losses that accompany diarrheal illnesses

    Advances in post-mortem CT-angiography.

    No full text
    Performing a post-mortem multidetector CT (MDCT) scan has already become routine in some institutes of forensic medicine. To better visualize the vascular system, different techniques of post-mortem CT-angiography have been explored, which can essentially be divided into partial- and whole-body angiography techniques. Probably the most frequently applied technique today is the so-called multiphase post-mortem CT-angiography (MPMCTA) a standardized method for investigating the vessels of the head, thorax and abdomen. Different studies exist, describing its use for medicolegal investigations, and its advantages as well as its artefacts and pitfalls. With the aim to investigate the performance of PMCTA and to develop and validate techniques, an international working group was created in 2012 called the "Technical Working Group Post-mortem Angiography Methods" (TWGPAM). Beyond its primary perspective, the goals of this group include creating recommendations for the indication of the investigation and for the interpretation of the images and to distribute knowledge about PMCTA. This article provides an overview about the different approaches that have been developed and tested in recent years and an update about ongoing research in this field. It will explain the technique of MPMCTA in detail and give an outline of its indications, application, advantages and limitations

    Campylobacter jejuni impairs sodium transport and epithelial barrier function via cytokine release in human colon

    No full text
    Campylobacter jejuni is the most prevalent cause of foodborne bacterial enteritis worldwide. Patients present with diarrhea and immune responses lead to complications like arthritis and irritable bowel syndrome. Although studies exist in animal and cell models, we aimed at a functional and structural characterization of intestinal dysfunction and the involved regulatory mechanisms in human colon. First, in patients' colonic biopsies, sodium malabsorption was identified as an important diarrheal mechanism resulting from hampered epithelial ion transport via impaired epithelial sodium channel (ENaC) beta- and gamma-subunit. In addition, barrier dysfunction from disrupted epithelial tight junction proteins (claudin-1, -3, -4, -5, and -8), epithelial apoptosis, and appearance of lesions was detected, which cause leak-flux diarrhea and can perpetuate immune responses. Importantly, these effects in human biopsies either represent direct action of Campylobacter jejuni (ENaC impairment) or are caused by proinflammatory signaling (barrier dysfunction). This was revealed by regulator analysis from RNA-sequencing (cytometric bead array-checked) and confirmed in cell models, which identified interferon-gamma, TNF alpha, IL-13, and IL-1 beta. Finally, bioinformatics' predictions yielded additional information on protective influences like vitamin D, which was confirmed in cell models. Thus, these are candidates for intervention strategies against C. jejuni infection and post-infectious sequelae, which result from the permissive barrier defect along the leaky gut
    corecore