45 research outputs found

    Partitioning the impact of environmental drivers and species interactions in dynamic aquatic communities

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Musters, C. J. M., Ieromina, O., Barmentlo, S. H., Hunting, E. R., Schrama, M., Cieraad, E., Vijver, M. G., & van Bodegom, P. M. Partitioning the impact of environmental drivers and species interactions in dynamic aquatic communities. Ecosphere, 10(11), (2019): e02910, doi:10.1002/ecs2.2910.Temperate aquatic communities are highly diverse and seasonally variable, due to internal biotic processes and environmental drivers, including human‐induced stressors. The impact of drivers on species abundance is supposed to differ fundamentally depending on whether populations are experiencing limitations, which may shift over the season. However, an integrated understanding of how drivers structure communities seasonally is currently lacking. In order to partition the effect of drivers, we used random forests to quantify interactions between all taxa and environmental factors using macrofaunal data from 18 agricultural ditches sampled over two years. We found that, over the agricultural season, taxon abundance became increasingly better predicted by the abundances of co‐occurring taxa and nutrients compared to other abiotic factors, including pesticides. Our approach provides fundamental insights in community dynamics and highlights the need to consider changes in species interactions to understand the effects of anthropogenic stressors.The authors are grateful to B. Schaub of Water Board Rijnland for his help, E. Gertenaar for assistance in the fieldwork, M. Wouterse for DOC measurements, and B. Koese for help with taxonomic identification of macrofaunal samples. CM designed the study, did the statistical modeling and analyses, and wrote the draft paper; OI did field sampling and taxonomic identification and constructed the datasets; OI and HB structured the data; EH, MS, ES, MV, and PvB contributed to the study design and the conceptual improvement of the manuscript; all authors substantially revised the subsequent drafts

    Ecosystem coupling:A unifying framework to understand the functioning and recovery of ecosystems

    Get PDF
    Global change frequently disrupts the connections among species, as well as among species and their environment, before the most obvious impacts can be detected. Therefore, we need to develop a unified conceptual framework that allows us to predict early ecological impacts under changing environments. The concept of coupling, defined as the multiple ways in which the biotic and abiotic components of ecosystems are orderly connected across space and/or time, may provide such a framework. Here, we operationally define the coupling of ecosystems based on a combination of correlational matrices and a null modeling approach. Compared with null models, ecosystems can be (1) coupled; (2) decoupled; and (3) anticoupled. Given that more tightly coupled ecosystems displaying higher levels of internal order may be characterized by a more efficient capture, transfer, and storage of energy and matter (i.e., of functioning), understanding the links between coupling and functioning may help us to accelerate the transition to planetary-scale sustainability. This may be achieved by promoting self-organized order

    Liquid-Crystal Monolayers in High Magnetic-Fields - a second-Harmonic Generation Study

    Get PDF
    Contains fulltext : 28072.pdf (publisher's version ) (Open Access
    corecore